

Informed consent? A study of "consent dialogs" on Android and iOS

Benjamin Altpeter, 2022-05-19

More than just annoying

Dominique Machuletz* and Rainer Böhme

Multiple Purposes, Multiple Problems: A User Study of Consent Dialogs after GDPR

Abstract: The European Union's General Data Protection Regulation (GDPR) requires websites to ask for consent to the use of cookies for specific purposes. This enlarges the relevant design space for consent dialogs. positive consent decision, even at the risk of users agreeing to more purposes than intended. We evaluate a practice observed on popular websites by conducting an experiment with one control and two treatment groups (N = 150 university students in two countries). We hypothesize that users' consent decision is influenced by (1) the number of options, connecting to the theory of choice proliferation, and (2) the presence of a highlighted default button ("select all"), connecting to theories of social norms and deception in consumer research. The results show that participants who see a default button accept cookies for more purposes than the a website complies with the agreed purposes. control group, while being less able to correctly recall their choice. After being reminded of their choice, they regret it more often and perceive the consent dialog as more deceptive than the control group. Whether users are presented one or three purposes has no significant

must have a legal basis for the collection and processing of personal data. One legal basis is consent: data subjects (users) agree to the data processing for specific purposes. While these requirements are not new, 1 Websites could try to maximize click-through rates and the GDPR's threat of sanctions and more effective enforcement led many website operators to rethink their cookie practices, or at least ensure compliance by obtaining consent before using cookies for purposes that are not covered by other legal bases [6].

> Web cookies are key-value pairs stored on the client device for purposes ranging from session tracking, user recognition, counting unique users, third-party tracking to profiling and targeted advertising [7]. As every cookie can in principle serve many purposes at the same time, and necessary cookies not carrying any personal data do not require consent, a user generally cannot verify if

Common methods for asking web users to decide on the cookie settings are pop-up banners or dialogs that appear at the beginning of each user's first visit of a website. They typically include a notice on the data collection that asks users whether they consent to (parts

> D. Machuletz and R. Böhme, "Multiple Purposes, Multiple Problems: A User Study of Consent Dialogs after GDPR," 10.2478/popets-2020-0037.

More than just annoying

role.

behaviour whether design nudges were used or not. However, in Experiment 2 (featuring bright patterns), two out of the three tested design nudges substantially affected people's consent choices in the hypothesised direction. As the only difference between the two experiments was the direction of the design nudges, it appears that such nudges influence privacy choices after all.

Why did we observe this discrepancy between the results of the two experiments? Nudges are often thought of as manipulations of the choice environment which only elicit their potential effect while being in place (i.e., no long-term effect). However, it may be that this changes when nudges (specifically System 1 nudges) are used for longer periods of time (e.g., seeing consent requests with dark patterns for years). A form of conditioning may happen, ultimately leading people to behave in a certain way even in absence of the nudge (e.g., participants agreeing to the consent request in the baseline condition without any design nudges present). Hertwig and Grüne-Yanoff (2017) refer to this process of "effect survival" after the removal of the nudge as the development of behavioural routines. Of course, design nudges are probably not the only reason for this conditioning to happen, but they certainly have the potential to play an important

Concerning the influence of the design nudges on participants' perception of control over their personal data, our results were stable across both experiments but did not support our assumptions. Although participants had (theoretically) full control over each decision in our study (i.e., for each consent request there was the possibility to choose "Do Not Agree"), they did not seem to perceive it that way, possibly because they are used to ambiguous real-life consent requests, which do

P. Graßl, H. Schraffenberger, F. Z. Borgesius, and M. Buijzen, "<u>Dark and Bright Patterns in Cookie Consent Requests</u>," 10.33621/jdsr.v3i1.54.

Legal situation

General Data Protection Regulation (GDPR)

• Concerns itself with the processing of personal data (Art. 2(1) GDPR).

General Data Protection Regulation (GDPR)

- Concerns itself with the processing of personal data (Art. 2(1) GDPR).
- Both terms defined in Art. 4 GDPR:
 - personal data: "any information relating to an identified or identifiable natural person [...]"
 - processing: "any operation [...] performed on personal data [...]"

General Data Protection Regulation (GDPR)

- Concerns itself with the processing of personal data (Art. 2(1) GDPR).
- Both terms defined in Art. 4 GDPR:
 - personal data: "any information relating to an identified or identifiable natural person [...]"
 - processing: "any operation [...] performed on personal data [...]"
- Explicitly very broad terms, in essence any data that can somehow be connected to a
 person (including pseudonymously!) and that a company deals with in some way is
 covered by the GDPR.

Legal bases

- Processing personal data is only legal if (Art. 6(1) GDPR):
 - (a) "the data subject has given **consent** [...]";
 - (b) "processing is necessary for the **performance of a contract** to which the data subject is party [...]";
 - (c) "processing is necessary for compliance with a **legal obligation** [of] the controller [...]";
 - (d) "processing is necessary in order to **protect the vital interests** of the data subject or of another natural person";
 - (e) "processing is necessary for the performance of a task carried out in the public interest or in the exercise of **official authority** vested in the controller";
 - (f) "processing is necessary for the purposes of the **legitimate interests** pursued by the controller or by a third party, except where such interests are overridden by the interests or fundamental rights and freedoms of the data subject which require protection of personal data, in particular where the data subject is a child".

Legal bases

- Processing personal data is only legal if (Art. 6(1) GDPR):
 - (a) "the data subject has given **consent** [...]";
 - (b) "processing is necessary for the **performance of a contract** to which the data subject is party [...]";
 - (c) "processing is necessary for compliance with a legal obligation [of] the controller [...]";
 - (d) "processing is necessary in order to **protect the vital interests** of the data subject or of another natural person";
 - (e) "processing is necessary for the performance of a task carried out in the public interest or in the exercise of **official authority** vested in the controller";
 - (f) "processing is necessary for the purposes of the **legitimate interests** pursued by the controller or by a third party, except where such interests are overridden by the interests or fundamental rights and freedoms of the data subject which require protection of personal data, in particular where the data subject is a child".

- Processing personal data is only legal if (Art. 6(1) GDPR):
 - (a) "the data subject has given **consent** [...]";
 - (b) "processing is necessary for the **performance of a contract** to which the data subject is party [...]";
 - (c) "processing is necessary for compliance with a legal obligation [of] the controller [...]"
 - (d) "processing is necessary in order to protect the vital interests of the data subject or of another natural person";
 - (e) "processing is necessary for the performance of a task carried out in the public interest or in the exercise of **official authority** vested in the controller";
 - (f) "processing is necessary for the purposes of the **legitimate interests** pursued by the controller or by a third party, except where such interests are overridden by the interests or fundamental rights and freedoms of the data subject which require protection of personal data, in particular where the data subject is a child".

- Processing personal data is only legal if (Art. 6(1) GDPR):
 - (a) "the data subject has given **consent** [...]";
 - (b) "processing is necessary for the **performance of a contract** to which the data subject is party [...]";
 - (c) "processing is necessary for compliance with a legal obligation [of] the controller [...]";
 - (d) "processing is necessary in order to protect the vital interests of the data subject or of another natural person";
 - (e) "processing is necessary for the performance of a task carried out in the public interest or in the exercise of **official authority** vested in the controller";
 - (f) "processing is necessary for the purposes of the legitimate interests pursued by the controller or by a third party, except where such interests are overridden by the interests or fundamental rights and freedoms of the data subject which require protection of personal data, in particular where the data subject is a child".

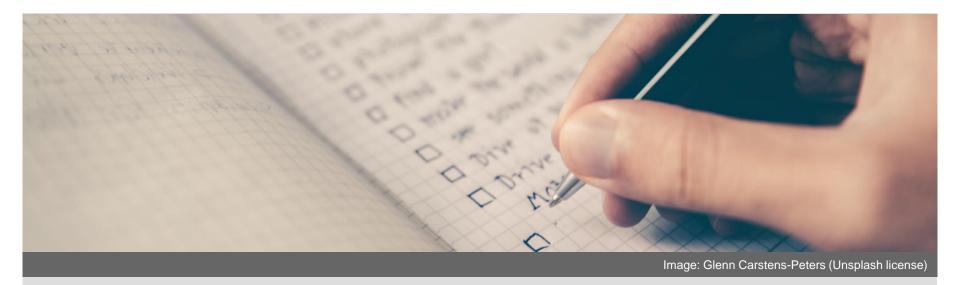
- Processing personal data is only legal if (Art. 6(1) GDPR):
 - (a) "the data subject has given **consent** [...]";
 - (b) "processing is necessary for the **performance of a contract** to which the data subject is party [...]";
 - (c) "processing is necessary for compliance with a legal obligation [of] the controller [...]";
 - (d) "processing is necessary in order to protect the vital interests of the data subject or of another natural person";
 - (e) "processing is necessary for the performance of a task carried out in the public interest or in the exercise of official authority vested in the controller";
 - (f) "processing is necessary for the purposes of the legitimate interests pursued by the controller or by a third party, except where such interests are overridden by the interests or fundamental rights and freedoms of the data subject which require protection of personal data, in particular where the data subject is a child".

- Processing personal data is only legal if (Art. 6(1) GDPR):
 - (a) "the data subject has given **consent** [...]";
 - (b) "processing is necessary for the performance of a contract to which the data subject is party [...]";
 - (c) "processing is necessary for compliance with a legal obligation [of] the controller [...]";
 - (d) "processing is necessary in order to protect the vital interests of the data subject or of another natural person";
 - (e) "processing is necessary for the performance of a task carried out in the public interest or in the exercise of official authority vested in the controller";
 - (f) "processing is necessary for the purposes of the legitimate interests pursued by the controller or by a third party, except where such interests are overridden by the interests or fundamental rights and freedoms of the data subject which require protection of personal data, in particular where the data subject is a child".

ePrivacy Directive ("the cookie law")

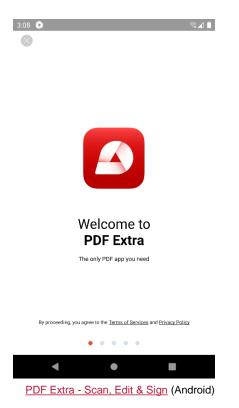
Art. 5(3) ePD applies to all data accessed from a device:

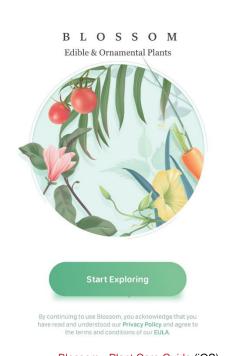
"Member States shall ensure that the **storing of information**, or the **gaining of access to information** already stored, in the terminal equipment of a subscriber or user is only allowed on condition that the subscriber or user concerned has given his or her **consent**, having been provided with clear and comprehensive information [...]. This shall not prevent any technical storage or access for the sole purpose of carrying out the transmission of a communication over an electronic communications network, or as strictly necessary in order for the provider of an information society service explicitly requested by the subscriber or user to provide the service."


ePrivacy Directive ("the cookie law")

No legal basis other than consent:

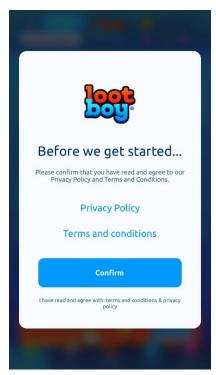
"Member States shall ensure that the storing of information, or the gaining of access to information already stored, in the terminal equipment of a subscriber or user is only allowed on condition that the subscriber or user concerned has given his or her consent, having been provided with clear and comprehensive information [...]. This shall not prevent any technical storage or access for the **sole purpose of carrying out the transmission of a communication** over an electronic communications network, or as **strictly necessary** in order for the provider of an information society service **explicitly requested** by the subscriber or user to provide the service."



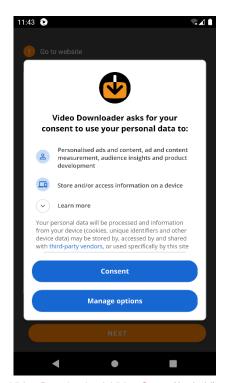

Consent dialog criteria

Clear affirmative action

10:50

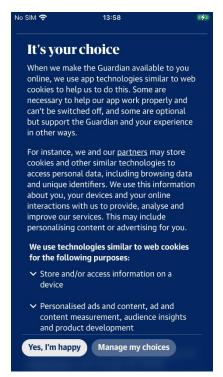

No SIM 😨

Blossom - Plant Care Guide (iOS)

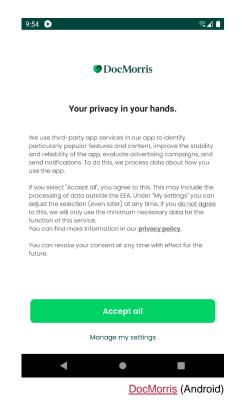


Refusing is as easy as accepting

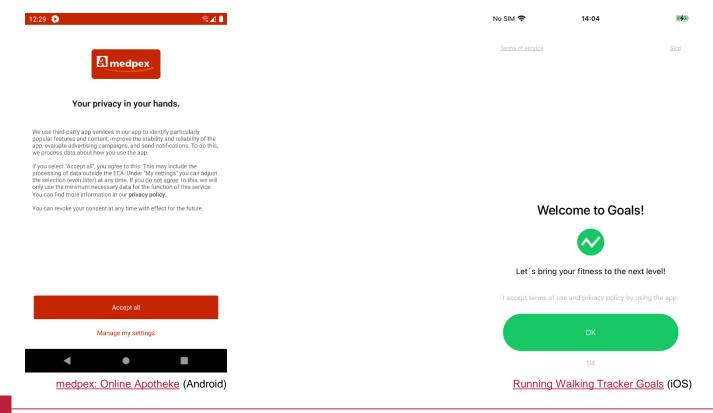
LootBoy - Grab your loot! (iOS)

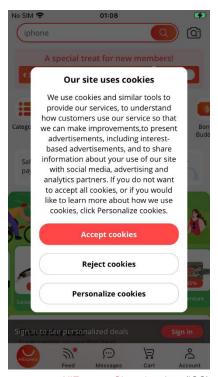


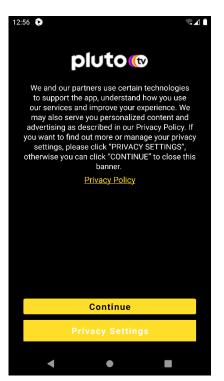
Video Downloader & Video Saver (Android)



Unambiguous button labels


The Guardian: Breaking News (iOS)

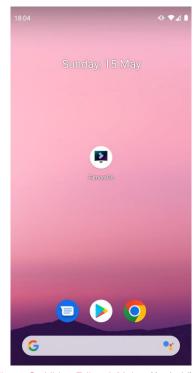

"Accept" button not highlighted by size



"Accept" button not highlighted by colour

AliExpress Shopping App (iOS)

Pluto TV - Live TV and Movies (Android)


Consent not mandatory

Terms of Service

Reolink (iOS)

FilmoraGo Video Editor & Maker (Android)

Violations are common on the web

CHI 2020 Paper

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

Dark Patterns after the GDPR: Scraping Consent Pop-ups and Demonstrating their Influence

Midas Nouwens^{1,2} Ilaria Liccardi² Michael Veale³ David Karger² Lalana Kagal² {midasnouwens} {ilaria} {m.veale} {karger} {lkagal}

1{}@cavi.au.dk Digital Design & Information Studies Aarhus University, DK

New consent management platforms (CMPs) have been intro-

²{}csail.mit.edu MIT CSAIL Cambridge, MA, USA ³{}ucl.ac.uk Faculty of Laws UCL, UK

ABSTRACT

duced to the web to conform with the EU's General Data Protection Regulation, particularly its requirements for consent when companies collect and process users' personal data. This work analyses how the most prevalent CMP designs affect people's consent choices. We scraped the designs of the five most popular CMPs on the top 10,000 websites in the UK (n=680). We found that dark patterns and implied consent are ubiquitous only 11.8% meet our minimal requirements based on European law. Second, we conducted a near experiment with 40 participants to investigate how the eight most common designs affect consent choices. We found that notification style (banner or barrier) has reflect; removing the opt-out button from the first page increases consent by 22–23 percentage points; and providing more granular controls on the first page decreases consent by 8–20 percentage points. This study provides an empirical basis for the necessary

collecting, storing, and processing their data. To many, this practice has become informally known as 'cookie banners'.

What counts as sufficient notice, and what counts as legally-acceptable consent, significantly differs depending on the geographical and regulatory scope that an actor falls in. The application in Europe of the General Data Protection Regulation (GDPR) [26] from May 2018, together with recent regulatory guidance from data protection authorities (DPAs) and jurisprudence from the Court of Justice of the European Union (CJEU), has highlighted the illegality of the way 'notice and consent' has hitherto functioned in the EU. These regulatory changes have both clarified the concept of consent in European law, as well as brought more significant (and extraterritorial) consequences for flaunting these rules. EU law in particular focuses on the quality of the consent required, and its freely-given, optional nature.

Consent management platforms (CMPs) have gained traction on the Web to help website owners outsource regulatory compliance

M. Nouwens, I. Liccardi, M. Veale, D. Karger, and L. Kagal, "<u>Dark Patterns after the GDPR: Scraping Consent Pop-ups and Demonstrating their Influence</u>," 10.1145/3313831.3376321.

Violations are common on the web

Do Cookie Banners Respect my Choice?

Measuring Legal Compliance of Banners from IAB Europe's Transparency and Consent Framework

Célestin Matte Université Côte d'Azur, Inria France celestin.matte@inria.fr Nataliia Bielova Université Côte d'Azur, Inria France nataliia.bielova@inria.fr Cristiana Santos
Research Centre for Justice and Governance
School of Law, University of Minho
cristianasantos@protonmail.com

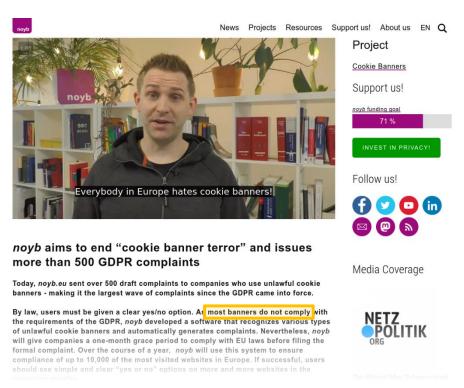
Abstract-As a result of the GDPR and the ePrivacy Directive, European users encounter cookie banners on almost every website. Many of such banners are implemented by Consent Management Providers (CMPs), who respect IAB Europe's Transparency and Consent Framework (TCF). Via cookie banners, CMPs collect and disseminate user consent to third parties. In this work, we systematically study IAB Europe's TCF and analyze consent stored behind the user interface of TCF cookie banners. We analyze the GDPR and the ePrivacy Directive to identify potential legal violations in implementations of cookie banners based on the storage of consent and detect such suspected violations by crawling 1 426 websites that contains TCF banners, found among 28 257 crawled European websites. With two automatic and semi-automatic crawl campaigns, we detect suspected violations, and we find that: 141 websites register positive consent even if the user has not made their choice; 236 websites nudge the users towards accepting consent by pre-selecting options; and 27 websites store a positive consent even if the user has explicitly onted out. Performing extensive tests on 560 websites, we find at least one suspected violation in 54% of them Finally, we provide a browser extension to racintate manual detection of suspected violations for regular users and Data Protection Authorities.

Keywords-Privacy; GDPR; Consent; Web measurement

I. Introduction

Today's web advertising ecosystem heavily relies on continuous data collection and tracking that allows advertising been measuring the impact of GDPR on the web tracking and advertising ecosystem. Libert et al. [41] observed a 22% drop in the amount of third-party cookies before and after the GDPR, but only a 2% drop in third-party content. Degeling et al. [9] recently measured the prevalence of cookie banners and showed that the amount of banners increased over time after the GDPR. Legal scholars, authorities and computer science researchers independently noticed that some banners do not allow users to refuse data collection, and raised this in various studies [9], [38], [2], [59]. Several recent works [56], [57], [53] measured the impact of choices set in cookie banners on tracking: upon accepting and rejecting the consent proposed in a cookie banner, researchers evaluated the number of cookies set in the browser and the number of third-party tracking requests across websites. Latest works [58], [45] evaluated whether the design of cookie banners made an impact on how users would interact with them.

Although many research efforts took place after the GDPR to detect and analyze cookie banners and their impact on tracking technologies and on the users, no study has analyzed what actually happens behind the user interface of cookie banners yet. It is unclear how to meaningfully compare the interface of the banners shown to the users to the actual consent that banners store and transmit to the third parties present on the website. Our work is motivated by the following ungstions:


Do banners actually respect user's choice made in the user

C. Matte, N. Bielova, and C. Santos, "<u>Do Cookie Banners Respect my Choice?</u>: <u>Measuring Legal Compliance of Banners from IAB Europe's Transparency and Consent Framework</u>," 10.1109/SP40000.2020.00076.

Violations are common on the web

https://noyb.eu/en/noyb-aims-end-cookie-banner-terror-and-issues-more-500-gdpr-complaints

Method

So, how can we find dialogs?

Privacy & Cookies Policy

What Is The Transparency & Consent Framework (TCF)?

The EU General Data Protection Regulation (GDPR), which came into force on 25 May 2018, revolutionised the data privacy landscape in Europe.

GDPR was designed to harmonise data privacy laws across Europe, giving individuals greater control and transparency over their personal data while raising the bar for businesses to achieve lawful processing of personal information.

The IAB Europe Transparency and Consent Framework (TCF) is the only GDPR consent solution built by the industry for the industry, creating a true industry-standard approach.

The TCF's simple objective is to help all parties in the digital advertising chain ensure that they comply with the EU's GDPR and ePrivacy Directive when processing personal data or accessing and/or storing information on a user's device, such as cookies, advertising identifiers, device identifiers and other tracking technologies.

https://iabeurope.eu/transparency-consent-framework/

So, how can we find dialogs?

Privacy & Cookies Policy

What Is The Transparency & Consent Framework (TCF)?

The EU General Data Protection Regulation (GDPR), which came into force on 25 May 2018, revolutionised the data privacy landscape in Europe.

GDPR was designed to harmonise data privacy laws across Europe, giving individuals greater control and transparency over their personal data while raising the bar for businesses to achieve lawful processing of personal information.

The IAB Europe Transparency and Consent Framework (TCF) is the only GDPR consent solutio built by the industry for the industry, creating a true industry-standard approach.

The TCF's simple objective is to help all parties in the digital advertising chain ensure that they comply with the EU's GDPR and ePrivacy Directive when processing personal data or accessing and/or storing information on a user's device, such as cookies, advertising identifiers, device identifiers and other tracking technologies.

https://iabeurope.eu/transparency-consent-framework/

AROUT

WORK

S YOUR R

JOIN ICC

GDPR enforcer rules that IAB Europe's consent popups are unlawful

Google, Amazon, and the entire tracking industry relies on IAB Europe's consent system, which has now been found to be illegal following complaints coordinated by ICCL.

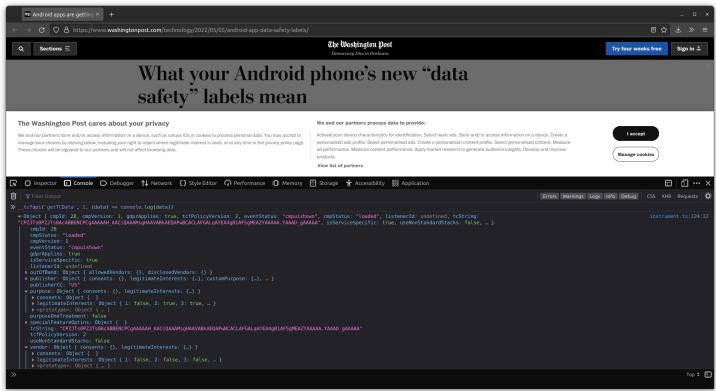
EU data protection authorities find that the consent popups that plagued Europeans for years are illegal. All data collected through them must be deleted. This decision impacts Google's, Amazon's and Microsoft's online advertising businesses.

2 February 2022. (Updated on 5 February with additional detail and infringements)

In a decision of 2 February 2022, 28 EU data protection authorities, led by the Belgian Data Protection Authority as the leading supervisory authority in the GDPR's one-stop-mechanism, found that the online advertising industry's trade body "IAB Europe" commits multiple violations of the GDPR in its processing of personal data in the context of its "Transparency and Consent Framework" (TCF) and the Real-Time Bidding (RTB) system.

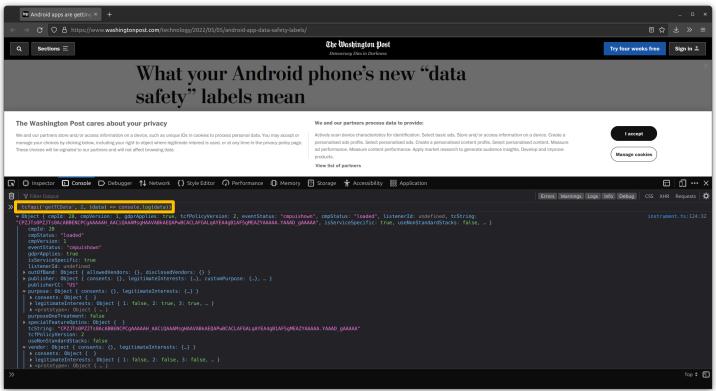
The consent popup system known as the "Transparency & Consent Framework" [TCF] is on 80% of the European internet. The tracking industry claimed it was a measure to comply with the GDPR. Today, GDPR enforcers ruled that this consent spam has, in fact, deprived hundreds of millions of Europeans of their fundamental rights.

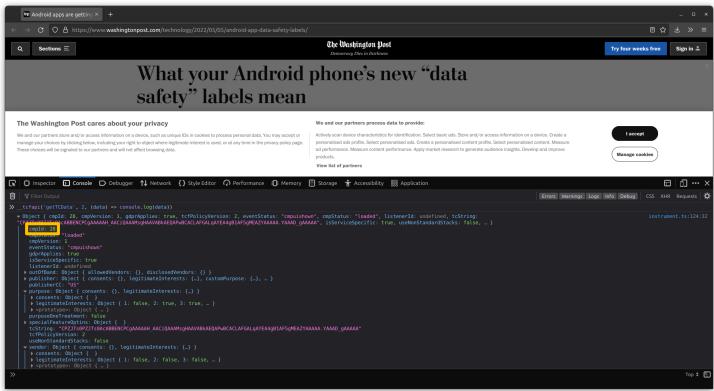
The findings:

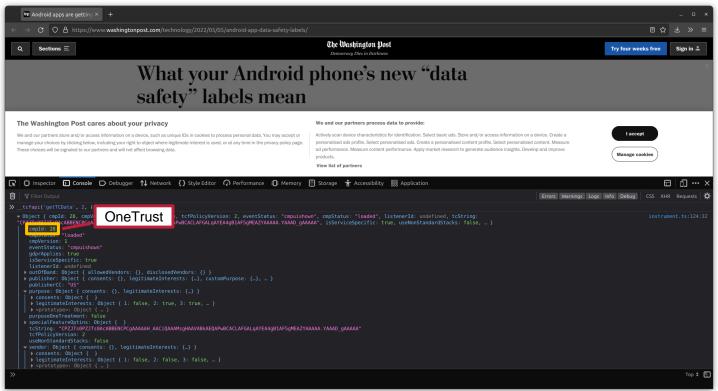

The TCF consent system was found to infringe the GDPR in the following ways:

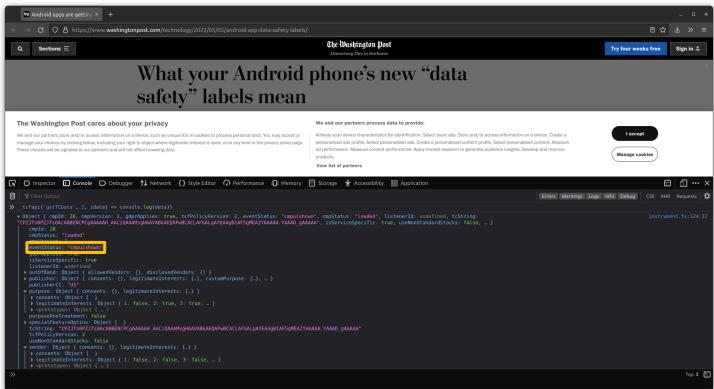
- TCF fails to ensure personal data are kept secure and confidential (Article 5(1)f, and 32 GDPR)
- TCF fails to properly request consent, and relies on a lawful basis (legitimate interest) that is not
 permissible because of the severe risk posed by online tracking-based "Real-Time Bidding" advertising
 (Article 5(1)a, and Article 6 GDPR)
- TCF fails to provide transparency about what will happen to people's data (Article 12, 13, and 14 GDPR)
- TCF fails to implement measures to ensure that data processing is performed in accordance with the GDPR (Article 24 GDPR)
- ICF tails to respect the requirement for data protection by design (Article 25 GDP)

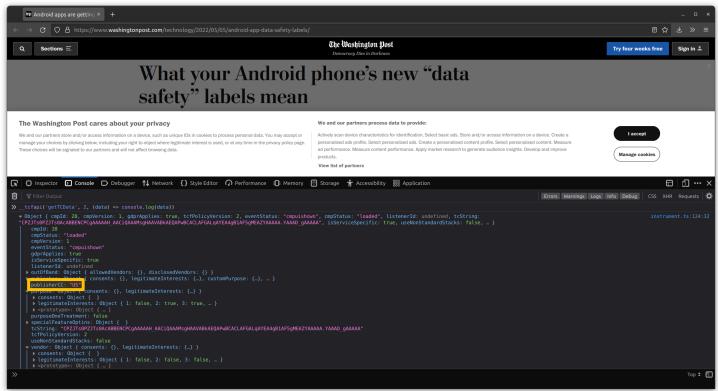
https://www.iccl.ie/news/gdpr-enforcer-rules-that-iab-europes-consent-popups-are-unlawful/

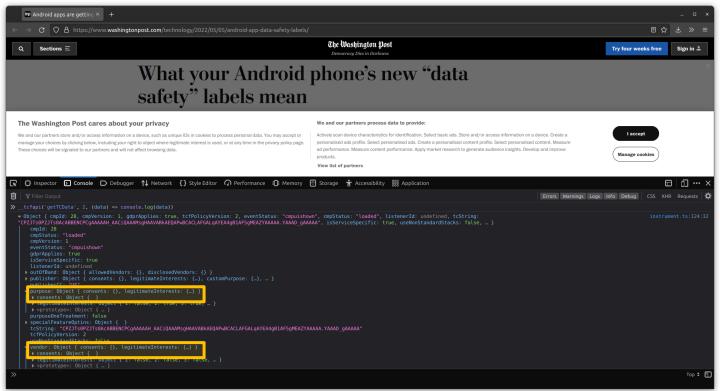


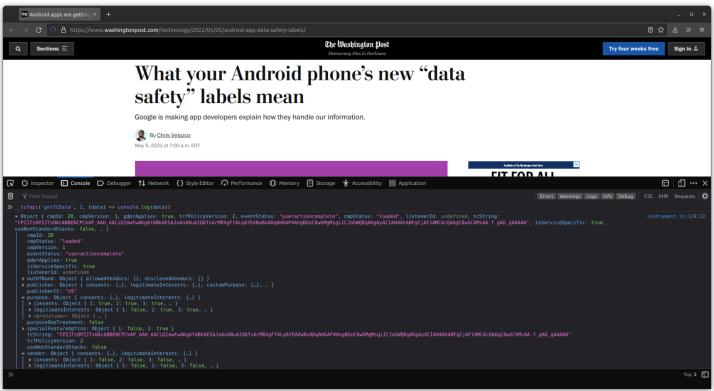


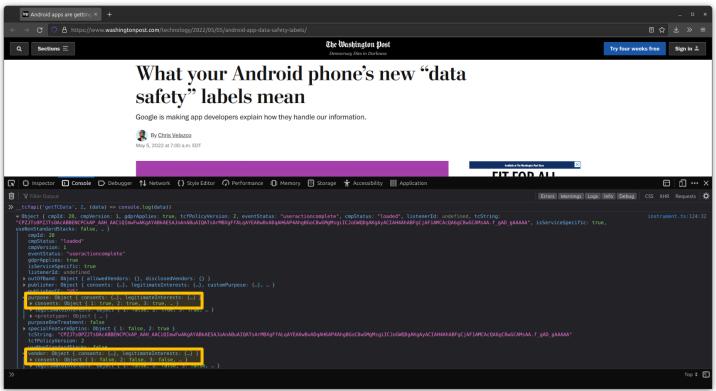









IAB Transparency & Consent Framework


IAB Transparency & Consent Framework

IAB Transparency & Consent Framework

Is that viable?

- Quick experiment on 823 Android apps:
 - 21.99 % showed consent element on screen
 - 2.55 % set TCF preferences
 - => not viable

Is that viable?

- Quick experiment on 823 Android apps:
 - 21.99 % showed consent element on screen
 - 2.55 % set TCF preferences
 - => not viable
- What about CMP-specific adapters?
 - Quick experiment on use of known CMPs: 2.8 % on iOS, 7.15 % on Android (over approximation)
 - => not viable, either

We have to do text-based matching on common elements in consent dialogs.

- We have to do text-based matching on common elements in consent dialogs.
- For that, we distinguish between:
 - link: App only links to privacy policy, e.g. in menu or footer.
 - notice: App informs user of processing but gives no choice.
 - dialog: App informs user of processing and solicits active consent.

- We have to do text-based matching on common elements in consent dialogs.
- For that, we distinguish between:
 - link: App only links to privacy policy, e.g. in menu or footer.
 - notice: App informs user of processing but gives no choice.
 - dialog: App informs user of processing and solicits active consent.
- We use regexes that match common phrases, e.g.:

```
/have read( and understood)? [^.]{3,35} (privacy|cookie|data
protection|GDPR) (policy|notice|information|statement)/
```


- We have to do text-based matching on common elements in consent dialogs.
- For that, we distinguish between:
 - link: App only links to privacy policy, e.g. in menu or footer.
 - notice: App informs user of processing but gives no choice.
 - dialog: App informs user of processing and solicits active consent.
- We use regexes that match common phrases, e.g.:

```
/have read( and understood)? [^.]{3,35} (privacy|cookie|data
protection|GDPR) (policy|notice|information|statement)/
```

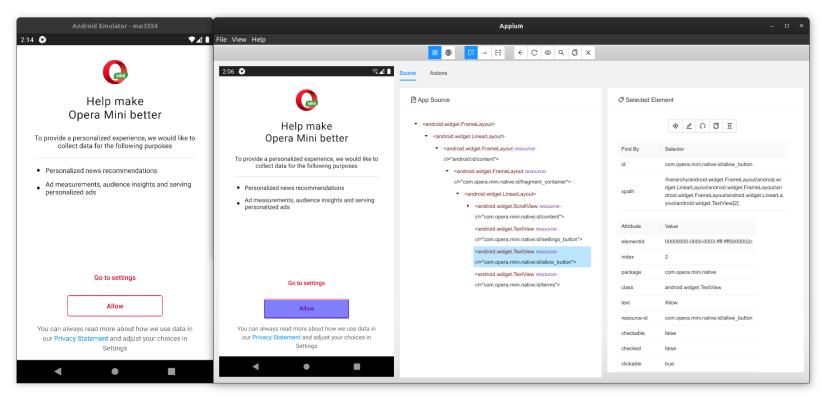
In addition: keyword score to weed out terms of services notices.

Basic instrumentation tooling from prior work extended for this thesis.

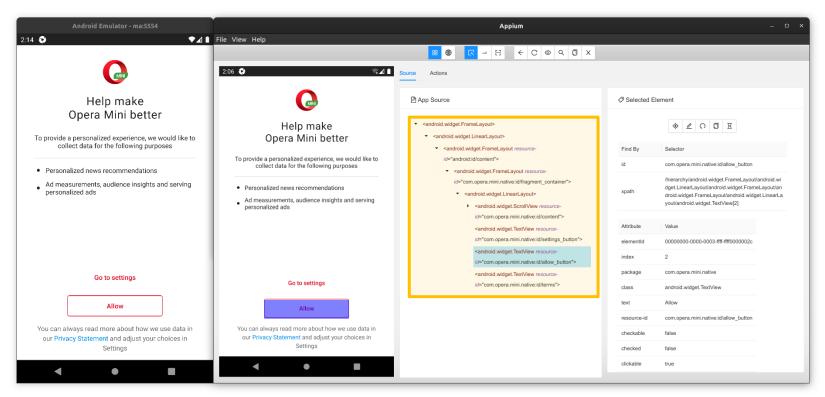
- Basic instrumentation tooling from prior work extended for this thesis.
- Uses emulator for Android, physical iPhone for iOS.

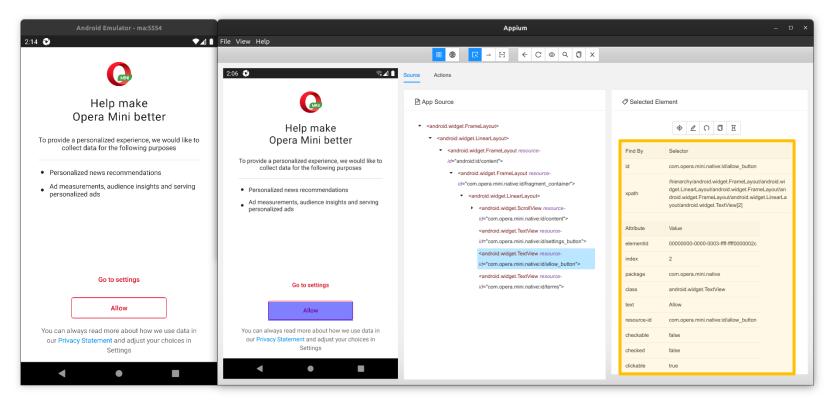
- Basic instrumentation tooling from prior work extended for this thesis.
- Uses emulator for Android, physical iPhone for iOS.
- Manages apps, sets permissions, resets device, and starts apps.

- Basic instrumentation tooling from prior work extended for this thesis.
- Uses emulator for Android, physical iPhone for iOS.
- Manages apps, sets permissions, resets device, and starts apps.
- Traffic collected using mitmproxy and objection/SSL Kill Switch 2.



https://appium.io/

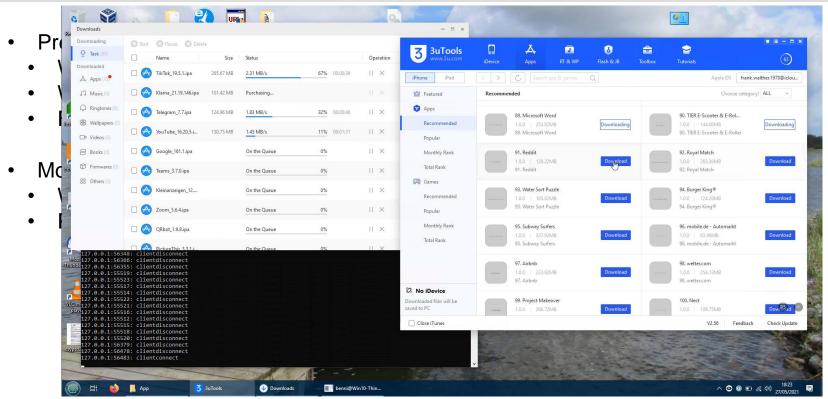




- Basic instrumentation tooling from prior work extended for this thesis.
- Uses emulator for Android, physical iPhone for iOS.
- Manages apps, sets permissions, resets device, and starts apps.
- Traffic collection using mitmproxy and objection/SSL Kill Switch 2.
- Analysis of and interaction with elements on screen using Appium.

- Basic instrumentation tooling from prior work extended for this thesis.
- Uses emulator for Android, physical iPhone for iOS.
- Manages apps, sets permissions, resets device, and starts apps.
- Traffic collection using mitmproxy and objection/SSL Kill Switch 2.
- Analysis of and interaction with elements on screen using Appium.
- Extraction of app preferences using Frida.

- Pretty easy on Android:
 - We scrape the top charts from the Play Store website.
 - We use <u>PlaystoreDownloader</u> to download them.


- Pretty easy on Android:
 - We scrape the top charts from the Play Store website.
 - We use PlaystoreDownloader to download them.
 - From the top 100 apps per category, we successfully downloaded 3,313 apps.

- Pretty easy on Android:
 - We scrape the top charts from the Play Store website.
 - We use <u>PlaystoreDownloader</u> to download them.
 - From the top 100 apps per category, we successfully downloaded 3,313 apps.
- More involved on iOS:
 - We discovered an old internal iTunes API for the top charts.
 - Previous download approaches were manual and unreliable.

- Pretty easy on Android:
 - We scrape the top charts from the Play Store website.
 - We use PlaystoreDownloader to download them.
 - From the top 100 apps per category, we successfully downloaded 3,313 apps.
- More involved on iOS:
 - We discovered an old internal iTunes API for the top charts.
 - Previous download approaches were manual and unreliable.
 - After a lot of arguing with Apple's servers, we found a way to programmatically "buy" and download apps.
 - Extended <u>IPATool</u> with support for that.

- Pretty easy on Android:
 - We scrape the top charts from the Play Store website.
 - We use <u>PlaystoreDownloader</u> to download them.

Extended <u>IPATool</u> with support for that.

- Pretty easy on Android:
 - We scrape the top charts from the Play Store website.
 - We use <u>PlaystoreDownloader</u> to download them.
 - From the top 100 apps per category, we successfully downloaded 3,313 apps.
- More involved on iOS:
 - We discovered an old internal iTunes API for the top charts.
 - Previous download approaches were manual and unreliable.
 - After a lot of arguing with Apple's servers, we found a way to programmatically "buy" and download apps.
 - Extended <u>IPATool</u> with support for that.
 - From the top 100 apps per category, we successfully downloaded 2,481 apps.

Results

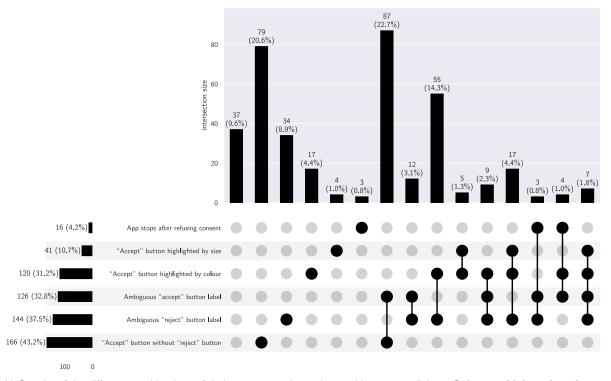
Prevalence of consent elements

• We successfully analysed 4,388 apps: 2,068 (62.42 %) on Android, 2,320 (93.51 %) on iOS.

Prevalence of consent elements

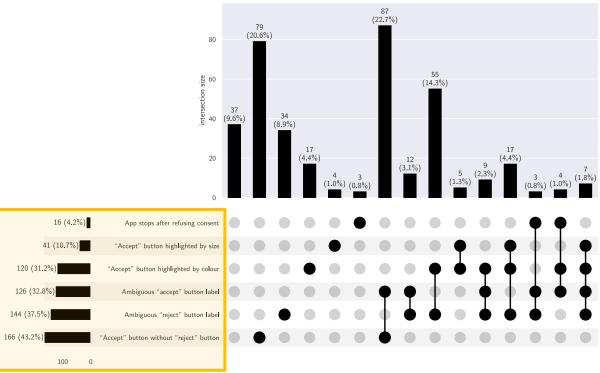
- We successfully analysed 4,388 apps: 2,068 (62.42 %) on Android, 2,320 (93.51 %) on iOS.
- High number of failures on Android mainly due to certificate pinning bypass.

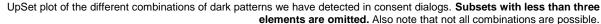
Prevalence of consent elements

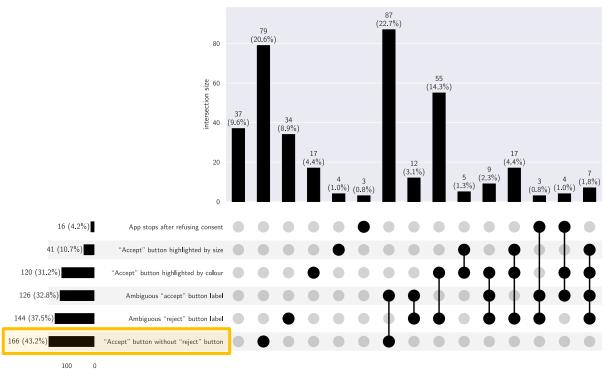

- We successfully analysed 4,388 apps: 2,068 (62.42 %) on Android, 2,320 (93.51 %) on iOS.
- High number of failures on Android mainly due to certificate pinning bypass.

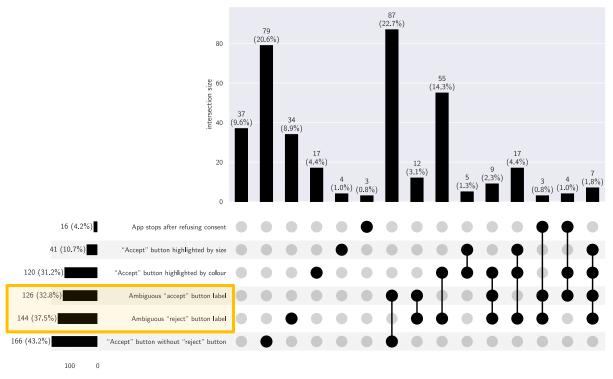
Classification	Detections on Android	Detections on iOS	Detections in total
dialog	149 (7.21 %)	235 (10.13 %)	384 (8.75 %)
notice	108 (5.22 %)	87 (3.75 %)	195 (4.44 %)
link	103 (4.98 %)	103 (4.44 %)	206 (4.69 %)
neither	1,708 (82.59 %)	1,895 (81.68 %)	3,603 (82.11 %)

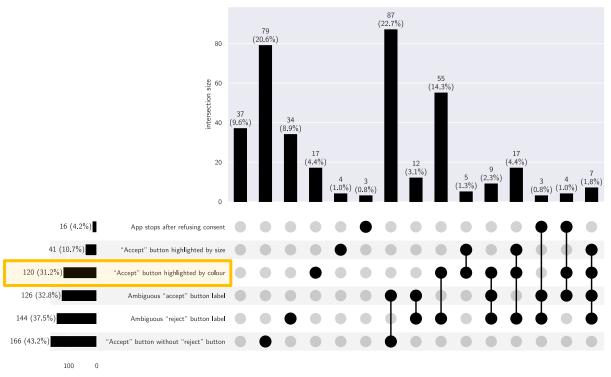
In total: 785 apps (17.89 %) had one of the consent elements we detect.

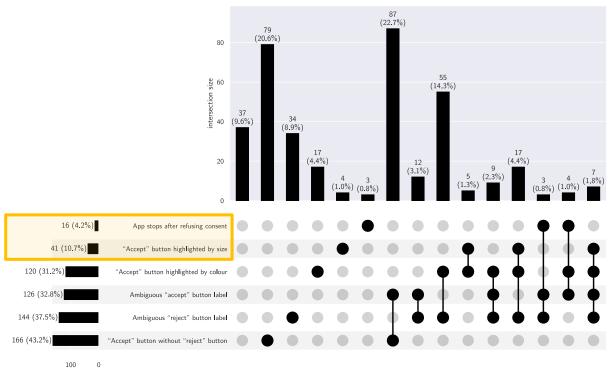


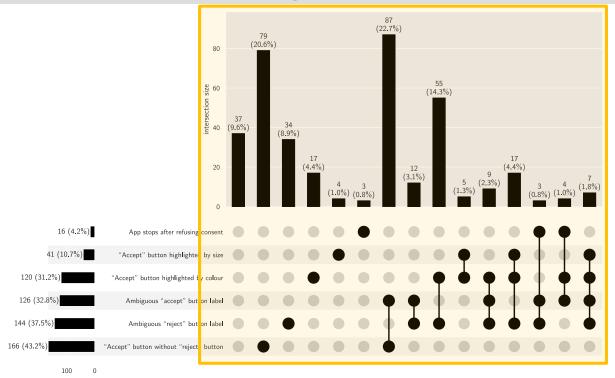


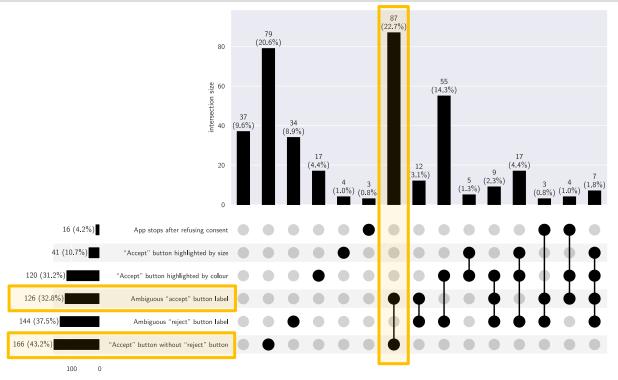


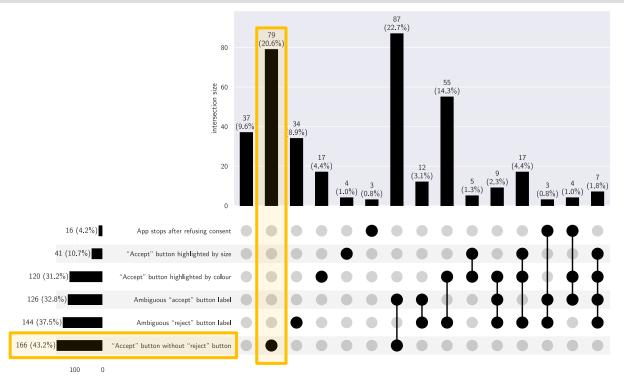


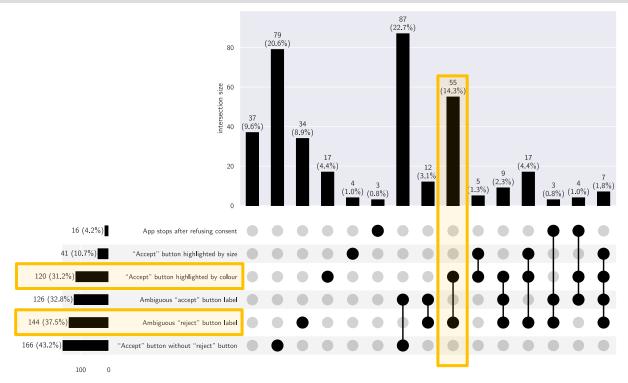












Violations in consent dialogs

In total: at least one dark pattern in 347 of the 384 apps with a dialog (90.36 %).

The share of dark patterns in dialogs is slightly higher on Android (91.28 %) compared to iOS (89.79 %).

Violations in consent dialogs

In total: at least one dark pattern in 347 of the 384 apps with a dialog (90.36 %).

The share of dark patterns in dialogs is slightly higher on Android (91.28 %) compared to iOS (89.79 %).

• These are not violations on their own! Dark patterns only result in the obtained consent being invalid. The actual violation is tracking based on that supposed consent.

Violations in consent dialogs

In total: at least one dark pattern in 347 of the 384 apps with a dialog (90.36 %).

The share of dark patterns in dialogs is slightly higher on Android (91.28 %) compared to iOS (89.79 %).

- These are not violations on their own! Dark patterns only result in the obtained consent being invalid. The actual violation is tracking based on that supposed consent.
- 297 of the 347 apps with a detected dark pattern in their dialog (85.59 %) transmitted pseudonymous data in any of our runs.

=> 77.34 % of the detected dialogs failed to acquire valid consent for the tracking they perform.

Validation of consent dialog results

Manual validation of consent element detection using screenshots for 250 apps:

Detected	Actual	Count
neither	link	1
neither	notice	2
neither	dialog	15
link	notice	2
link	dialog	5

• Notably: not a single false positive. False negatives expected due to approach and don't impact validity of detected violations (as these are only for dialogs).

Validation of consent dialog results

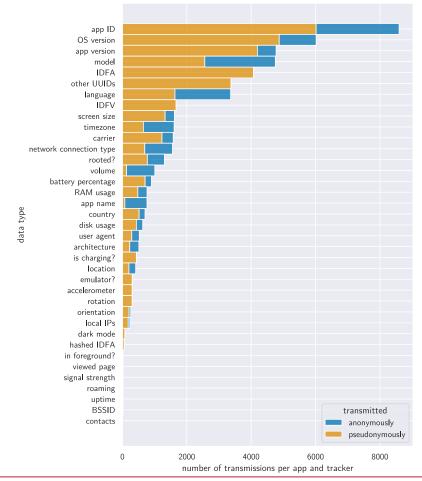
Manual validation of consent element detection using screenshots for 250 apps:

Detected	Actual	Count
neither	link	1
neither	notice	2
neither	dialog	15
link	notice	2
link	dialog	5

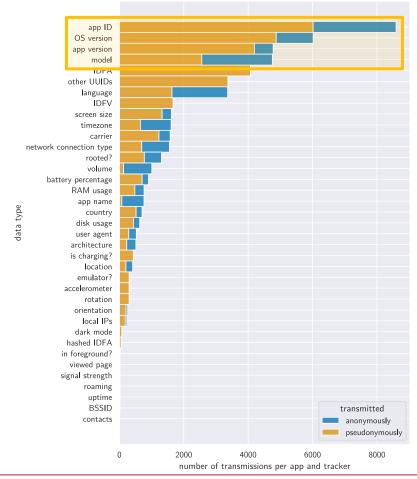
- Notably: not a single false positive. False negatives expected due to approach and don't impact validity of detected violations (as these are only for dialogs).
- Manual validation of detected dark patterns for 25 apps: no false positives either, one "accept" button larger than the "reject" button was not detected.

 To analyse transmitted data: as request data is often obfuscated and ridiculously nested, we wrote 26 adapters for common tracking endpoints.

- To analyse transmitted data: as request data is often obfuscated and ridiculously nested, we wrote 26 adapters for common tracking endpoints.
 - These already cover more than 10% of all traffic!


- To analyse transmitted data: as request data is often obfuscated and ridiculously nested, we wrote 26 adapters for common tracking endpoints.
 - These already cover more than 10% of all traffic!
 - For everything else: indicator matching of honey data.

- To analyse transmitted data: as request data is often obfuscated and ridiculously nested, we wrote 26 adapters for common tracking endpoints.
 - These already cover more than 10% of all traffic!
 - For everything else: indicator matching of honey data.
- 72.95 % of apps transmitted unique device ID without interaction.
- Also, 33.32 % of requests before interaction were identified as going to trackers according to Exodus, with 78.08 % of apps making at least one request to a tracker.



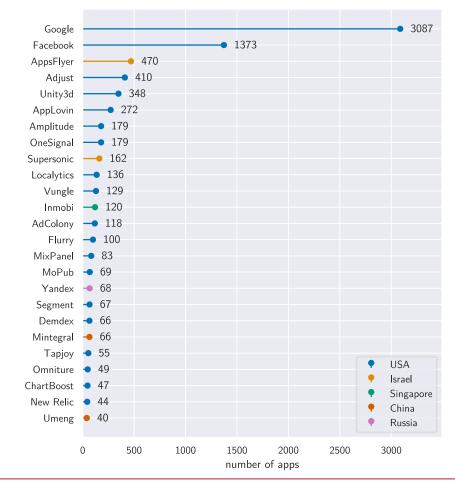
Number of times the observed data types were transmitted per app and tracker before interaction. Note that we are also using the term "IDFA" for the Android advertising ID here.



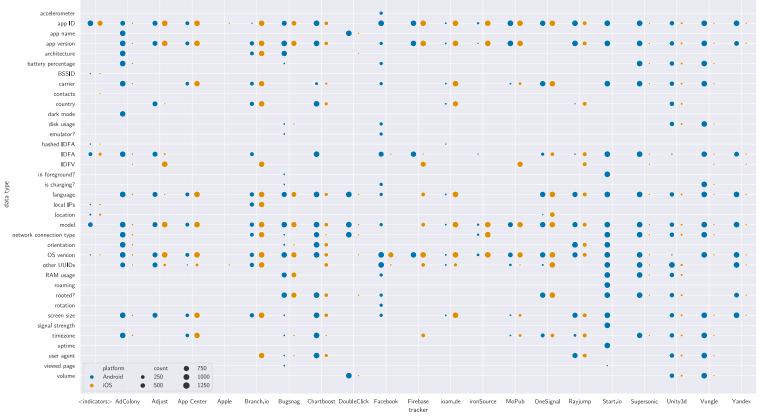
Number of times the observed data types were transmitted per app and tracker before interaction. Note that we are also using the term "IDFA" for the Android advertising ID here.

Number of times the observed data types were transmitted per app and tracker before interaction. Note that we are also using the term "IDFA" for the Android advertising ID here.

Trackers

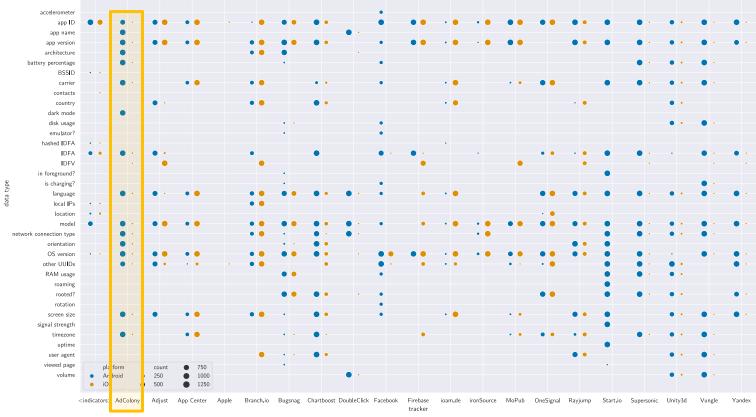


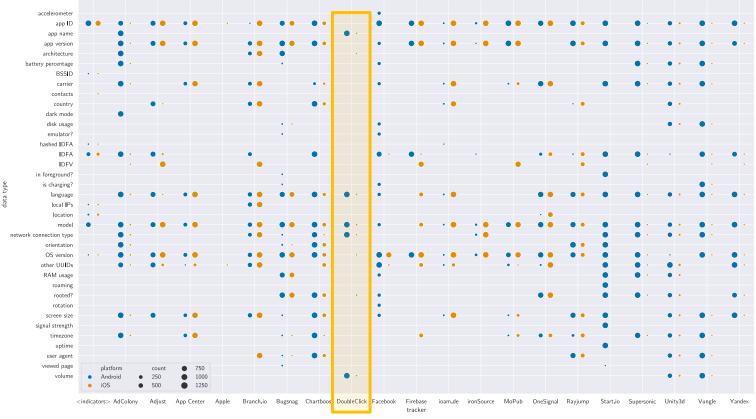
Number of apps that sent requests to the 25 most common trackers in our dataset according to Exodus without user interaction.

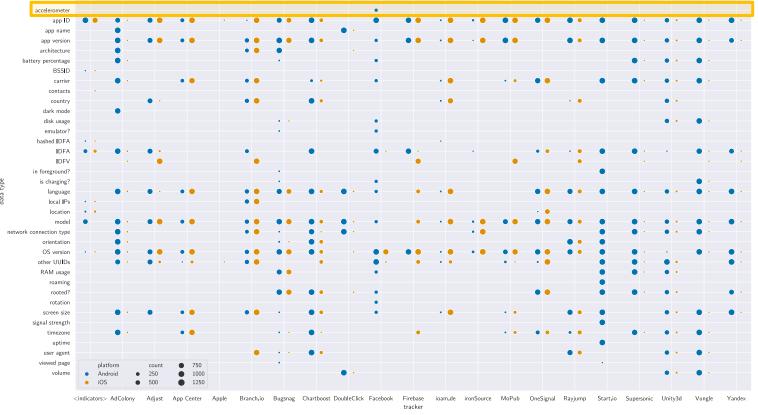

Trackers

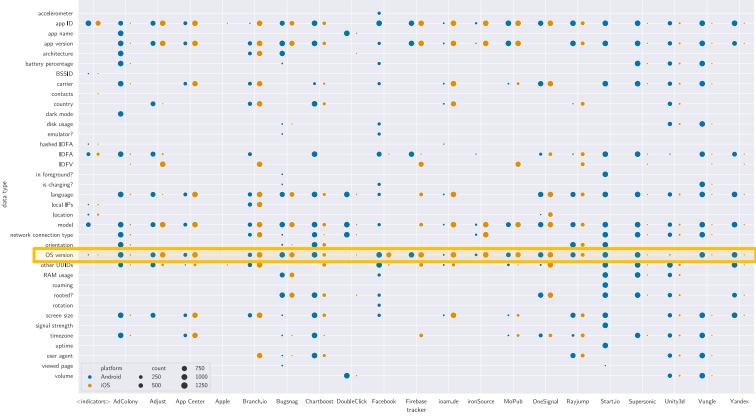
Number of apps that sent requests to the 25 most common trackers in our dataset according to Exodus without user interaction.

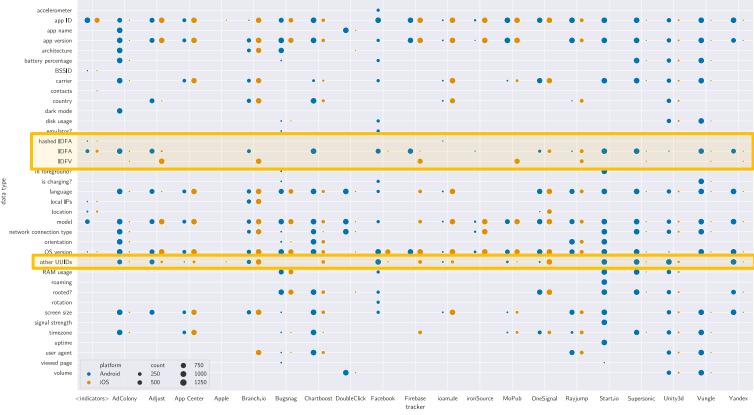








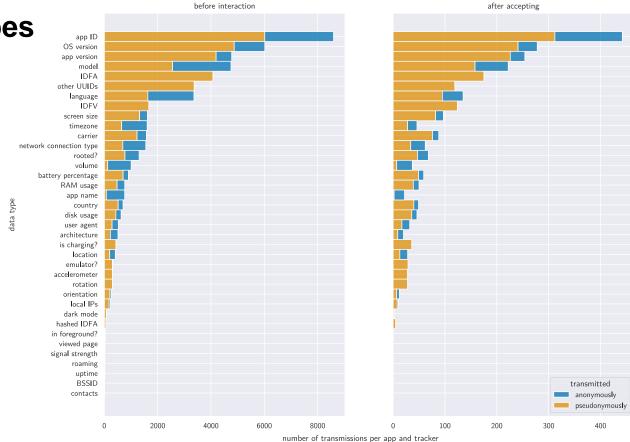




Analysis interacted with discovered "accept" and "reject" buttons.

- Analysis interacted with discovered "accept" and "reject" buttons.
- Collected traffic for 330 apps (9,342 requests) after accepting, 28 apps (323 requests) after rejecting.

- Analysis interacted with discovered "accept" and "reject" buttons.
- Collected traffic for 330 apps (9,342 requests) after accepting, 28 apps (323 requests) after rejecting.
 - Remember the low number of dialogs which even have a "reject" button we could click.
 - => Results for rejected runs not representative.



- Analysis interacted with discovered "accept" and "reject" buttons.
- Collected traffic for 330 apps (9,342 requests) after accepting, 28 apps (323 requests) after rejecting.
 - Remember the low number of dialogs which even have a "reject" button we could click.
 - => Results for rejected runs not representative.
- Of the 384 apps with a detected dialog, 282 (73.44 %) already transmitted pseudonymous data before receiving a consent choice.

	requests identified as trackers	apps contacting at least one tracker	apps transmitting pseudonymous data
initial runs	33.32 %	78.08 %	72.95 %
accepted runs	31.90 %	+ 25 apps	+ 46 apps
rejected runs	47.06 %	+ 1 apps	+ 1 apps

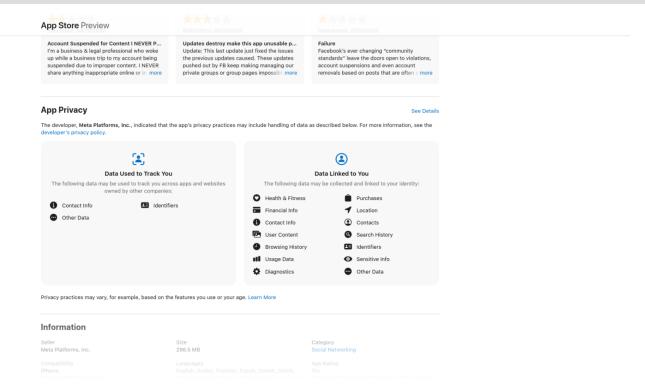
before interaction

Number of times the

observed data types

were transmitted per

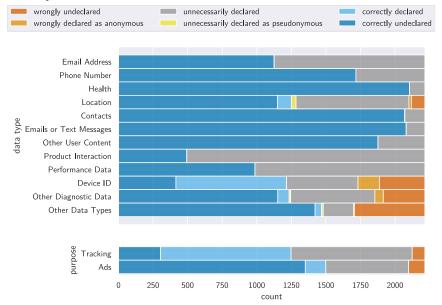
app and tracker. Note


that we are also using

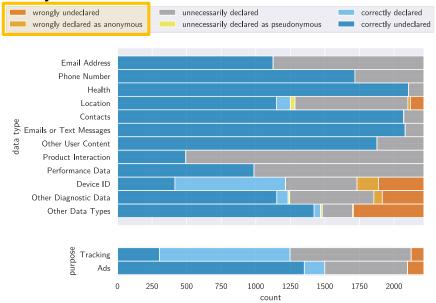
the term "IDFA" for the

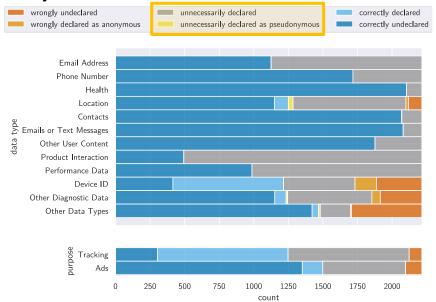
Android advertising ID

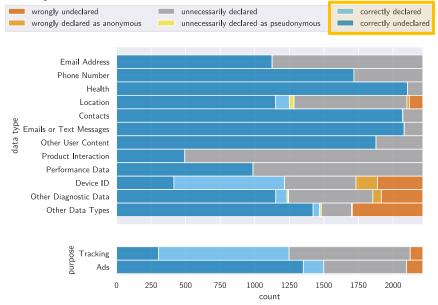
here.

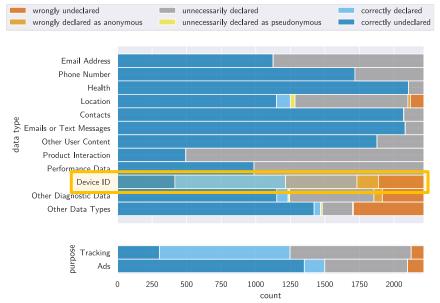


https://apps.apple.com/us/app/facebook/id284882215

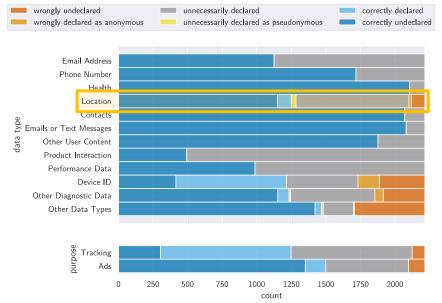

112 of the 2,481 apps on iOS (4.51 %) had an empty privacy label. 182 of them (7.68 %) claimed not to collect any data.


112 of the 2,481 apps on iOS (4.51 %) had an empty privacy label. 182 of them (7.68 %) claimed not to collect any data.


112 of the 2,481 apps on iOS (4.51 %) had an empty privacy label. 182 of them (7.68 %) claimed not to collect any data.

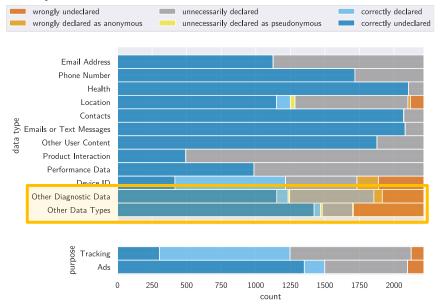

112 of the 2,481 apps on iOS (4.51 %) had an empty privacy label. 182 of them (7.68 %) claimed not to collect any data.

112 of the 2,481 apps on iOS (4.51 %) had an empty privacy label. 182 of them (7.68 %) claimed not to collect any data.



Apple privacy labels

112 of the 2,481 apps on iOS (4.51 %) had an empty privacy label. 182 of them (7.68 %) claimed not to collect any data.


Correctness of data types and purposes in privacy labels on iOS. We can only definitively say when data is collected but if we don't observe data being transmitted, it does not necessarily mean that it is never collected.

Apple privacy labels

112 of the 2,481 apps on iOS (4.51 %) had an empty privacy label. 182 of them (7.68 %) claimed not to collect any data.

Correctness of data types and purposes in privacy labels on iOS. We can only definitively say when data is collected but if we don't observe data being transmitted, it does not necessarily mean that it is never collected.

Apple privacy labels

112 of the 2,481 apps on iOS (4.51 %) had an empty privacy label. 182 of them (7.68 %) claimed not to collect any data.

Correctness of data types and purposes in privacy labels on iOS. We can only definitively say when data is collected but if we don't observe data being transmitted, it does not necessarily mean that it is never collected.

• We detected consent elements in around 18 % of apps, with 9 % dialogs, 4 % notices, and 5 % privacy policy links.

- We detected consent elements in around 18 % of apps, with 9 % dialogs, 4 % notices, and 5 % privacy policy links.
- There are strict criteria for legally compliant consent dialogs.
- More than 90 % of analysed apps violate at least one of these criteria, especially the requirement of a first-layer "reject" button.

- We detected consent elements in around 18 % of apps, with 9 % dialogs, 4 % notices, and 5 % privacy policy links.
- There are strict criteria for legally compliant consent dialogs.
- More than 90 % of analysed apps violate at least one of these criteria, especially the requirement of a first-layer "reject" button.
- One third of all network traffic was tracking. Google and Facebook are the most common trackers by far.
- 73 % of apps sent pseudonymous data before any interaction. This also applies to the ones with a dialog.

- We detected consent elements in around 18 % of apps, with 9 % dialogs, 4 % notices, and 5 % privacy policy links.
- There are strict criteria for legally compliant consent dialogs.
- More than 90 % of analysed apps violate at least one of these criteria, especially the requirement of a first-layer "reject" button.
- One third of all network traffic was tracking. Google and Facebook are the most common trackers by far.
- 73 % of apps sent pseudonymous data before any interaction. This also applies to the ones with a dialog.
- What companies fail to mention when they blame the GDPR for the flood of consent dialogs: Most of them blatantly violate the GDPR!

Fix problems with certificate pinning bypass on Android.

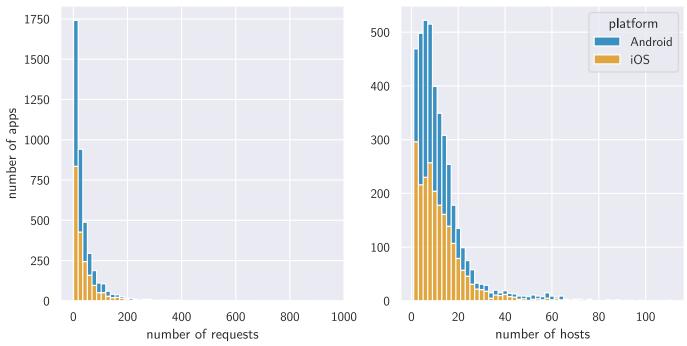
- Fix problems with certificate pinning bypass on Android.
- Interact with apps beyond consent dialog (being careful not to accidentally give consent).

- Fix problems with certificate pinning bypass on Android.
- Interact with apps beyond consent dialog (being careful not to accidentally give consent).
- Monitor changes over time.

- Fix problems with certificate pinning bypass on Android.
- Interact with apps beyond consent dialog (being careful not to accidentally give consent).
- Monitor changes over time.
- Research defenses against tracking and metadata extraction.

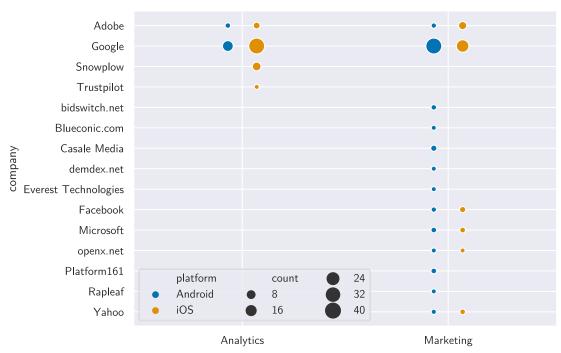
More reading and watching material

- B. Altpeter and M. Wessels, "Do they track? Automated analysis of Android apps for privacy violations," https://benjamin-altpeter.de/doc/presentation-android-privacy.pdf.
- B. Altpeter, "iOS watching you: Automated analysis of 'zero-touch' privacy violations under iOS," https://benjamin-altpeter.de/doc/presentation-ios-privacy.pdf.
- M. Schrems, "Datenschutz skalieren,"
 https://www.bfdi.bund.de/SharedDocs/Videos/DE/Veranstaltungen/20220322_Datenschutz-skalieren.html.
- Konferenz der unabhängigen Datenschutzaufsichtsbehörden des Bundes und der Länder, "Orientierungshilfe der Aufsichtsbehörden für Anbieter:innen von Telemedien ab dem 1. Dezember 2021,"
 - https://www.datenschutzkonferenz-online.de/media/oh/20211220_oh_telemedien.pdf.



This slide intentionally left blank.

Requests and hosts



Number of requests and unique hosts contacted per app without any user interaction. Three apps with more than 1,000 requests are omitted in this graph: com.prequel.app on Android with 2,500 requests, and com.audiomack.iphone and com.storycover on iOS with 2,383 and 1,019 requests, respectively.

Cookies

Prevalence of cookies by various companies and their categories (**across all runs**). Each point represents the number of times a cookie by the company in the respective row and belonging to the category in the respective column was set by an app to a different value, with the size of the point indicating how often the cookie was set.

IAB TCF data

IAB TCF data

- 163 of the analysed apps have saved IABTCF preferences (64 on Android, and 99 on iOS).
- Of those, 61 were not detected as having a consent dialog by our approach. Manually
 analysing those showed that 17 do in fact show a dialog that we did not detect but the
 remaining 44 do not.
 - Conversely, 282 apps were detected as showing a dialog but have not saved IABTCF preferences.
- The apps most often set the IABTCF_gdprApplies property, with 125 apps setting the
 property initially, another 27 only setting it after accepting the dialog, and one app setting
 it only after rejecting. In total, 145 apps determine the GDPR to be applicable, 6 apps
 (incorrectly) determine it not to be, and 2 apps set non-spec-compliant values. None of
 the apps changed their determination after accepting or rejecting the dialog.

IAB TCF data

- IABTCF_PublisherCC specifies the app publisher's country. 62 apps are from Germany according to this, for 22 the CMP didn't know the country, seven are from the US, five from the Netherlands, and three from Spain. The following countries are each represented once: France, Hong Kong, Luxembourg, Japan, United Kingdom, and Australia.
- Most apps store consent for all ten purposes, with an average of 9.10 and a median of 10.
- The average for the amount of stored vendor consents is 361.75, the median is 158 (maximum possible: 860). All possible vendors were requested by at least seven apps.
- Of the 68 apps that initially store a TC string, 63 showed an English consent dialog (our devices were set to English), and five showed a dialog in German.

Failed apps

We successfully analysed 4,388 apps with 2,068 apps on Android and 2,320 apps on iOS, corresponding to 62.42 % and 93.51 % of the downloaded apps, respectively. On Android, the high number of apps we could not analyse is caused for the most part by problems with the certificate pinning bypass through objection.

1,049 of the Android apps failed to launch or quit immediately after being launched through objection. These apps were excluded from the analysis. We discuss this further in Section 8.2. On iOS, only 65 apps failed to launch and 18 apps could not be installed because they require a newer version of iOS than we can use. The remaining failures on both platforms were mostly due to Appium or Frida commands failing even after multiple retries.

Limitations

- We only provide lower bound on consent element prevalence and dark patterns.
 - Appium doesn't expose the text in all games, sometimes missing (esp. games).
 - Appium only allows limited access to element attributes, e.g. no link targets or styling.
- String matching approach limits the details we can extract.
- We only detect English and German consent elements.
- Apps could try to re-identify our device using fingerprinting despite us resetting it.
- Apps could interpret lack of IDFA permission on iOS as refusal of consent.
- 32 % of apps on Android quit immediately due to objection.
- Root/jailbreak and emulator could affect app behaviour.
- HTTPS proxy and certificate pinning bypass could affect app behaviour.

